Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Toàn cảnh đề thi tốt nghiệp THPT môn Toán (2017 - 2021)

Tài liệu gồm 880 trang, được tổng hợp bởi thầy giáo Nguyễn Hoàng Việt, tổng hợp và phân loại theo chuyên đề các dạng toán trong các đề thi tốt nghiệp THPT môn Toán của Bộ Giáo dục và Đào tạo từ năm học 2016 – 2017 đến năm học 2020 – 2021, có đáp án và lời giải chi tiết; tài liệu giúp học sinh tham khảo trong quá trình ôn tập chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán. D09 – 1.9 Chứng minh bất đẳng thức (dùng nhiều phương pháp) – Mức độ 3. D02 – 5.2 Giải bất phương trình bậc hai và bài toán liên quan – Mức độ 4. D01 – 1.1 Quy tắc cộng – Mức độ 1. D01 – 2.1 Bài toán chỉ sử dụng hoán vị – Mức độ 1. D01 – 2.1 Bài toán chỉ sử dụng hoán vị – Mức độ 2. D02 – 2.2 Bài toán chỉ sử dụng chỉnh hợp – Mức độ 1. D02 – 2.2 Bài toán chỉ sử dụng chỉnh hợp – Mức độ 2. D03 – 2.3 Bài toán chỉ sử dụng tổ hợp – Mức độ 1. D02 – 3.2 Tìm hệ số, số hạng trong khai triển nhị thức Newton – Mức độ 2. D02 – 3.2 Tìm hệ số, số hạng trong khai triển nhị thức Newton – Mức độ 3. D02 – 5.2 Tính xác suất bằng định nghĩa – Mức độ 2. D02 – 5.2 Tính xác suất bằng định nghĩa – Mức độ 3. D02 – 5.2 Tính xác suất bằng định nghĩa – Mức độ 4. D03 – 5.3 Tính xác suất bằng công thức cộng – Mức độ 3. D04 – 5.4 Tính xác suất bằng công thức nhân – Mức độ 2. D00 – 3.0 Các câu hỏi chưa phân dạng – Mức độ 1. D03 – 3.3 Tìm hạng tử trong cấp số cộng – Mức độ 1. D00 – 4.0 Các câu hỏi chưa phân dạng – Mức độ 1. D03 – 4.3 Tìm hạng tử trong cấp số nhân – Mức độ 1. D02 – 1.2 Dãy số có giới hạn 0 – Mức độ 1. D03 – 1.3 Giới hạn của dãy phân thức hữu tỷ – Mức độ 1. D07 – 2.7 Dạng vô cùng chia vô cùng – Mức độ 1. D01 – 1.1 Câu hỏi lý thuyết về tính đơn điệu – Mức độ 1. D02 – 1.2 Xét tính đơn điệu của hàm số cho bởi công thức – Mức độ 1. D02 – 1.2 Xét tính đơn điệu của hàm số cho bởi công thức – Mức độ 2. D03 – 1.3 Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị – Mức độ 1. D03 – 1.3 Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị – Mức độ 2. D04 – 1.4 Tìm khoảng đơn điệu của hàm số hợp f(u) biết hàm số f'(x) hoặc đồ thị của f'(x) – Mức độ 2. D04 – 1.4 Tìm khoảng đơn điệu của hàm số hợp f(u) biết hàm số f'(x) hoặc đồ thị của f'(x) – Mức độ 3. D04 – 1.4 Tìm khoảng đơn điệu của hàm số hợp f(u) biết hàm số f'(x) hoặc đồ thị của f'(x) – Mức độ 4. D05 – 1.5 Tìm khoảng đơn điệu của hàm số h(x) = f(x) + g(x) biết hàm số f'(x) hoặc đồ thị của f'(x) – Mức độ 4. D06 – 1.6 Tìm tham số m để hàm số đơn điệu trên R, trên từng khoảng xác định – Mức độ 3. D07 – 1.7 Tìm m để hàm số đơn điệu trên khoảng cho trước – Mức độ 2. D07 – 1.7 Tìm m để hàm số đơn điệu trên khoảng cho trước – Mức độ 3. D07 – 1.7 Tìm m để hàm số đơn điệu trên khoảng cho trước – Mức độ 4. D08 – 1.8 Ứng dụng tính đơn điệu vào PT, BPT, HPT, BĐT – Mức độ 3. D08 – 1.8 Ứng dụng tính đơn điệu vào PT, BPT, HPT, BĐT – Mức độ 4. D02 – 2.2 Tìm cực trị của hàm số cho bởi công thức – Mức độ 1. D02 – 2.2 Tìm cực trị của hàm số cho bởi công thức – Mức độ 2. D02 – 2.2 Tìm cực trị của hàm số cho bởi công thức – Mức độ 3. D03 – 2.3 Tìm cực trị dựa vào BBT, đồ thị – Mức độ 1. D03 – 2.3 Tìm cực trị dựa vào BBT, đồ thị – Mức độ 2. D03 – 2.3 Tìm cực trị dựa vào BBT, đồ thị – Mức độ 4. D04 – 2.4 Cực trị của hs chứa dấu GTTĐ, hs cho bởi nhiều công thức – Mức độ 3. D04 – 2.4 Cực trị của hs chứa dấu GTTĐ, hs cho bởi nhiều công thức – Mức độ 4. D05 – 2.5 Tìm cực trị của hàm số f(u) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 1. D05 – 2.5 Tìm cực trị của hàm số f(u) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 2. D05 – 2.5 Tìm cực trị của hàm số f(u) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 3. D05 – 2.5 Tìm cực trị của hàm số f(u) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 4. D06 – 2.6 Tìm cực trị của hàm số h(x) = f(x) + g(x) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 4. D07 – 2.7 Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước – Mức độ 2. D07 – 2.7 Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước – Mức độ 3. D07 – 2.7 Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước – Mức độ 4. D09 – 2.9 Tìm m để hàm số, đồ thị hàm số bậc ba có cực trị thỏa mãn điều kiện – Mức độ 3. D09 – 2.9 Tìm m để hàm số, đồ thị hàm số bậc ba có cực trị thỏa mãn điều kiện – Mức độ 4. D10 – 2.10 Tìm m để hs trùng phương có 1 hoặc 3 cực trị – Mức độ 3. D11 – 2.11 Tìm m để hàm số, đồ thị hàm số trùng phương có cực trị thỏa mãn ĐK – Mức độ 3. D14 – 2.14 Tìm m để hs chứa dấu GTTĐ có cực trị thỏa mãn đk cho trước – Mức độ 3. D14 – 2.14 Tìm m để hs chứa dấu GTTĐ có cực trị thỏa mãn đk cho trước – Mức độ 4. D15 – 2.15 Tìm m để hs khác có cực trị thỏa mãn đk cho trước – Mức độ 4. D16 – 2.16 Bài toán liên quan đến đường thẳng đi qua hai điểm cực trị của hs bậc 3 và hs bậc 2 trên bậc 1 – Mức độ 3. D02 – 3.2 GTLN, GTNN trên đoạn [a;b] – Mức độ 1. D02 – 3.2 GTLN, GTNN trên đoạn [a;b] – Mức độ 2. D03 – 3.3 GTLN, GTNN trên khoảng – Mức độ 2. D04 – 3.4 GTLN, GTNN của hàm số biết BBT, đồ thị – Mức độ 1. D04 – 3.4 GTLN, GTNN của hàm số biết BBT, đồ thị – Mức độ 3. D07 – 3.7 Ứng dụng GTNN, GTLN trong bài toán phương trình, bất phương trình, hệ phương trình – Mức độ 3. D08 – 3.8 GTLN, GTNN của hs liên quan đến đồ thị, tích phân – Mức độ 4. D09 – 3.9 Tìm m để hs có GTLN, GTNN thỏa mãn đk cho trước – Mức độ 3. D09 – 3.9 Tìm m để hs có GTLN, GTNN thỏa mãn đk cho trước – Mức độ 4. D11 – 3.11 Tìm m để hs chứa dấu GTTĐ có GTLN, GTNN thỏa mãn đk cho trước – Mức độ 3. D11 – 3.11 Tìm m để hs chứa dấu GTTĐ có GTLN, GTNN thỏa mãn đk cho trước – Mức độ 4. D12 – 3.12 GTLN, GTNN hàm nhiều biến – Mức độ 4. D13 – 3.13 Bài toán ứng dụng, tối ưu, thực tế – Mức độ 3. D01 – 4.1 Câu hỏi lý thuyết về tiệm cận – Mức độ 1. D02 – 4.2 Tìm đường tiệm cận, số đường tiệm cận của hs b1 Trên b1 – Mức độ 1. D02 – 4.2 Tìm đường tiệm cận, số đường tiệm cận của hs b1 Trên b1 – Mức độ 2. D03 – 4.3 Tìm đường tiệm cận, số đường tiệm cận của hs phân thức hữu tỷ – Mức độ 2. D03 – 4.3 Tìm đường tiệm cận, số đường tiệm cận của hs phân thức hữu tỷ – Mức độ 3. D04 – 4.4 Tìm đường tiệm cận, số đường tiệm cận của hs chứa căn – Mức độ 1. D04 – 4.4 Tìm đường tiệm cận, số đường tiệm cận của hs chứa căn – Mức độ 2. D04 – 4.4 Tìm đường tiệm cận, số đường tiệm cận của hs chứa căn – Mức độ 3. D05 – 4.5 Tìm đường tiệm cận, số đường tiệm cận của đồ thị hs biết BBT, đồ thị – Mức độ 2. D06 – 4.6 Bài toán liên quan đến đường tiệm cận – Mức độ 3. D06 – 4.6 Bài toán liên quan đến đường tiệm cận – Mức độ 4. D00 – 5.0 Các câu hỏi chưa phân dạng – Mức độ 3. D01 – 5.1 Nhận dạng hàm số thông qua đồ thị, BBT – Mức độ 1. D01 – 5.1 Nhận dạng hàm số thông qua đồ thị, BBT – Mức độ 2. D01 – 5.1 Nhận dạng hàm số thông qua đồ thị, BBT – Mức độ 3. D03 – 5.3 Các phép biến đổi đồ thị – Mức độ 3. D04 – 5.4 Tìm tọa độ giao điểm, số giao điểm của hai đồ thị không chứa tham số – Mức độ 1. D04 – 5.4 Tìm tọa độ giao điểm, số giao điểm của hai đồ thị không chứa tham số – Mức độ 2. D05 – 5.5 Tìm số nghiệm của phương trình f(x) = g(x) khi biết đồ thị, BBT của f(x) – Mức độ 1. D05 – 5.5 Tìm số nghiệm của phương trình f(x) = g(x) khi biết đồ thị, BBT của f(x) – Mức độ 2. D05 – 5.5 Tìm số nghiệm của phương trình f(x) = g(x) khi biết đồ thị, BBT của f(x) – Mức độ 3. D05 – 5.5 Tìm số nghiệm của phương trình f(x) = g(x) khi biết đồ thị, BBT của f(x) – Mức độ 4. D06 – 5.6 Tìm m để phương trình có nghiệm, có k nghiệm khi biết đồ thị BBT – Mức độ 1. D06 – 5.6 Tìm m để phương trình có nghiệm, có k nghiệm khi biết đồ thị BBT – Mức độ 4. D07 – 5.7 Tìm m để PT có nghiệm bằng PP cô lập m – Mức độ 3. D09 – 5.9 Tìm m liên quan đến tương giao của hs bậc 3 – Mức độ 3. D09 – 5.9 Tìm m liên quan đến tương giao của hs bậc 3 – Mức độ 4. D11 – 5.11 Tìm m liên quan đến tương giao của hs trùng phương – Mức độ 4. D12 – 5.12 Tìm m liên quan đến tương giao của hs khác – Mức độ 4. D18 – 5.18 Bài toán tiếp tuyến của đồ thị – Mức độ 3. D18 – 5.18 Bài toán tiếp tuyến của đồ thị – Mức độ 4. D01 – 1.1 Tính giá trị của biểu thức chứa lũy thừa – Mức độ 2. D02 – 1.2 Biến đổi, rút gọn, biểu diễn các biểu thức chứa lũy thừa – Mức độ 1. D02 – 1.2 Biến đổi, rút gọn, biểu diễn các biểu thức chứa lũy thừa – Mức độ 2. D02 – 2.2 Đạo hàm hàm số lũy thừa – Mức độ 1. D01 – 3.1 Tính giá trị biểu thức chứa lô-ga-rít – Mức độ 1. D01 – 3.1 Tính giá trị biểu thức chứa lô-ga-rít – Mức độ 2. D01 – 3.1 Tính giá trị biểu thức chứa lô-ga-rít – Mức độ 3. D02 – 3.2 Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít – Mức độ 1. D02 – 3.2 Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít – Mức độ 2. D02 – 3.2 Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít – Mức độ 3. D03 – 3.3 So sánh các biểu thức lô-ga-rít – Mức độ 1. D03 – 3.3 So sánh các biểu thức lô-ga-rít – Mức độ 2. D00 – 4.0 Các câu hỏi chưa phân dạng – Mức độ 3. D00 – 4.0 Các câu hỏi chưa phân dạng – Mức độ 4. D01 – 4.1 Tập xác định của hàm số mũ, hàm số lô-ga-rít – Mức độ 1. D01 – 4.1 Tập xác định của hàm số mũ, hàm số lô-ga-rít – Mức độ 2. D01 – 4.1 Tập xác định của hàm số mũ, hàm số lô-ga-rít – Mức độ 3. D02 – 4.2 Tính đạo hàm hàm số mũ, hàm số lô-ga-rít – Mức độ 1. D02 – 4.2 Tính đạo hàm hàm số mũ, hàm số lô-ga-rít – Mức độ 2. D04 – 4.4 Tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa hàm mũ, hàm lô-ga-rít – Mức độ 3. D04 – 4.4 Tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa hàm mũ, hàm lô-ga-rít – Mức độ 4. D06 – 4.6 Đồ thị hàm số mũ, Logarit – Mức độ 2. D07 – 4.7 Lý thuyết tổng hợp hàm số lũy thừa, mũ, lô-ga-rít – Mức độ 1. D08 – 4.8 Bài toán lãi suất – Mức độ 2. D08 – 4.8 Bài toán lãi suất – Mức độ 3. D09 – 4.9 Bài toán tăng trưởng – Mức độ 2. D09 – 4.9 Bài toán tăng trưởng – Mức độ 3. D01 – 5.1 Phương trình mũ cơ bản – Mức độ 1. D02 – 5.2 Phương pháp đưa về cùng cơ số GPT Mũ – Mức độ 1. D02 – 5.2 Phương pháp đưa về cùng cơ số GPT Mũ – Mức độ 2. D03 – 5.3 Phương pháp đặt ẩn phụ GPT Mũ – Mức độ 1. D03 – 5.3 Phương pháp đặt ẩn phụ GPT Mũ – Mức độ 2. D03 – 5.3 Phương pháp đặt ẩn phụ GPT Mũ – Mức độ 3. D05 – 5.5 Phương pháp hàm số, đánh giá GPT mũ – Mức độ 3. D05 – 5.5 Phương pháp hàm số, đánh giá GPT mũ – Mức độ 4. D06 – 5.6 Phương trình Logarit cơ bản – Mức độ 1. D06 – 5.6 Phương trình Logarit cơ bản – Mức độ 2. D07 – 5.7 Phương pháp đưa về cùng cơ số GPT Logarit – Mức độ 2. D07 – 5.7 Phương pháp đưa về cùng cơ số GPT Logarit – Mức độ 3. D07 – 5.7 Phương pháp đưa về cùng cơ số GPT Logarit – Mức độ 4. D08 – 5.8 Phương pháp đặt ẩn phụ GPT Logarit – Mức độ 3. D08 – 5.8 Phương pháp đặt ẩn phụ GPT Logarit – Mức độ 4. D10 – 5.10 Phương pháp hàm số, đánh giá GPT Logarit – Mức độ 3. D10 – 5.10 Phương pháp hàm số, đánh giá GPT Logarit – Mức độ 4. D00 – 6.0 Các câu hỏi chưa phân dạng – Mức độ 3. D00 – 6.0 Các câu hỏi chưa phân dạng – Mức độ 4. D01 – 6.1 Bất phương trình Mũ cơ bản – Mức độ 1. D02 – 6.2 Phương pháp đưa về cùng cơ số GBPT Mũ – Mức độ 2. D02 – 6.2 Phương pháp đưa về cùng cơ số GBPT Mũ – Mức độ 3. D03 – 6.3 Phương pháp đặt ẩn phụ GBPT Mũ – Mức độ 2. D03 – 6.3 Phương pháp đặt ẩn phụ GBPT Mũ – Mức độ 4. D06 – 6.6 Bất phương trình Logarit cơ bản – Mức độ 1. D06 – 6.6 Bất phương trình Logarit cơ bản – Mức độ 2. D07 – 6.7 Phương pháp đưa về cùng cơ số GBPT Logarit – Mức độ 2. D08 – 6.8 Phương pháp đặt ẩn phụ GBPT Logarit – Mức độ 2. D08 – 6.8 Phương pháp đặt ẩn phụ GBPT Logarit – Mức độ 3. D10 – 6.10 Phương pháp hàm số, đánh giá GBPT Logarit – Mức độ 3. D10 – 6.10 Phương pháp hàm số, đánh giá GBPT Logarit – Mức độ 4. D01 – 1.1 Định nghĩa, tính chất của nguyên hàm – Mức độ 1. D02 – 1.2 Nguyên hàm của hs cơ bản – Mức độ 1. D02 – 1.2 Nguyên hàm của hs cơ bản – Mức độ 2. D03 – 1.3 Nguyên hàm của hs phân thức hữu tỷ – Mức độ 1. D03 – 1.3 Nguyên hàm của hs phân thức hữu tỷ – Mức độ 2. D04 – 1.4 Tìm nguyên hàm thỏa mãn ĐK cho trước – Mức độ 2. D04 – 1.4 Tìm nguyên hàm thỏa mãn ĐK cho trước – Mức độ 3. D05 – 1.5 PP đổi biến số t = u(x) – Mức độ 2. D05 – 1.5 PP đổi biến số t = u(x) – Mức độ 3. D07 – 1.7 PP nguyên hàm từng phần – Mức độ 2. D07 – 1.7 PP nguyên hàm từng phần – Mức độ 3. D08 – 1.8 Nguyên hàm kết hợp đổi biến và từng phần – Mức độ 3. D09 – 1.9 Nguyên hàm của hàm ẩn – Mức độ 3. D10 – 1.10 Nguyên hàm của hs cho bởi nhiều công thức – Mức độ 3. D00 – 2.0 Các câu hỏi chưa phân dạng – Mức độ 3. D01 – 2.1 Định nghĩa, tính chất của tích phân – Mức độ 1. D01 – 2.1 Định nghĩa, tính chất của tích phân – Mức độ 2. D02 – 2.2 Tích phân cơ bản – Mức độ 1. D02 – 2.2 Tích phân cơ bản – Mức độ 2. D02 – 2.2 Tích phân cơ bản – Mức độ 3. D04 – 2.4 PP đổi biến t = u(x) – Mức độ 2. D04 – 2.4 PP đổi biến t = u(x) – Mức độ 3. D04 – 2.4 PP đổi biến t = u(x) – Mức độ 4. D06 – 2.6 Phương pháp tích phân từng phần – Mức độ 2. D06 – 2.6 Phương pháp tích phân từng phần – Mức độ 3. D07 – 2.7 Kết hợp đổi biến và từng phần tính tích phân – Mức độ 3. D08 – 2.8 Tích phân của hàm ẩn. Tích phân đặc biệt – Mức độ 2. D08 – 2.8 Tích phân của hàm ẩn. Tích phân đặc biệt – Mức độ 3. D08 – 2.8 Tích phân của hàm ẩn. Tích phân đặc biệt – Mức độ 4. D09 – 2.9 Tích phân bằng PP Vi Phân – Mức độ 4. D10 – 2.10 10 Tích phân hàm số hữu tỷ – Mức độ 2. D10 – 2.10 10 Tích phân hàm số hữu tỷ – Mức độ 3. D01 – 3.1 Câu hỏi lý thuyết – Mức độ 1. D01 – 3.1 Câu hỏi lý thuyết – Mức độ 2. D02 – 3.2 Diện tích hình phẳng được giới hạn bởi các đồ thị – Mức độ 1. D02 – 3.2 Diện tích hình phẳng được giới hạn bởi các đồ thị – Mức độ 2. D02 – 3.2 Diện tích hình phẳng được giới hạn bởi các đồ thị – Mức độ 3. D02 – 3.2 Diện tích hình phẳng được giới hạn bởi các đồ thị – Mức độ 4. D03 – 3.3 Thể tích giới hạn bởi các đồ thị (tròn xoay) – Mức độ 1. D03 – 3.3 Thể tích giới hạn bởi các đồ thị (tròn xoay) – Mức độ 2. D03 – 3.3 Thể tích giới hạn bởi các đồ thị (tròn xoay) – Mức độ 3. D04 – 3.4 Thể tích tính theo mặt cắt S(x) – Mức độ 2. D06 – 3.6 Bài toán thực tế sử dụng diện tích hình phẳng – Mức độ 3. D06 – 3.6 Bài toán thực tế sử dụng diện tích hình phẳng – Mức độ 4. D08 – 3.8 Ứng dụng vào bài toán chuyển động – Mức độ 2. D08 – 3.8 Ứng dụng vào bài toán chuyển động – Mức độ 3. D08 – 3.8 Ứng dụng vào bài toán chuyển động – Mức độ 4. D10 – 3.10 Ứng dụng tích phân vào bài toán đại số – Mức độ 3. D10 – 3.10 Ứng dụng tích phân vào bài toán đại số – Mức độ 4. D01 – 1.1 Câu hỏi lý thuyết về số phức – Mức độ 1. D01 – 1.1 Câu hỏi lý thuyết về số phức – Mức độ 2. D02 – 1.2 Xác định phần thực, phần ảo, mô đun, liên hợp của số phức – Mức độ 1. D02 – 1.2 Xác định phần thực, phần ảo, mô đun, liên hợp của số phức – Mức độ 2. D03 – 1.3 Biểu diễn hình học cơ bản của số phức – Mức độ 1. D02 – 2.2 Thực hiện các phép toán về số phức. – Mức độ 1. D02 – 2.2 Thực hiện các phép toán về số phức. – Mức độ 2. D03 – 2.3 Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp,…) qua các phép toán – Mức độ 1. D03 – 2.3 Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp,…) qua các phép toán – Mức độ 2. D03 – 2.3 Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp,…) qua các phép toán – Mức độ 4. D04 – 2.4 Tìm số phức thỏa mãn đk cho trước – Mức độ 2. D04 – 2.4 Tìm số phức thỏa mãn đk cho trước – Mức độ 3. D04 – 2.4 Tìm số phức thỏa mãn đk cho trước – Mức độ 4. D01 – 3.1 Biểu diễn số phức qua các phép toán – Mức độ 1. D01 – 3.1 Biểu diễn số phức qua các phép toán – Mức độ 2. D02 – 3.2 Tập hợp điểm biểu diễn của số phức – Mức độ 1. D02 – 3.2 Tập hợp điểm biểu diễn của số phức – Mức độ 2. D02 – 3.2 Tập hợp điểm biểu diễn của số phức – Mức độ 3. D03 – 3.3 Tìm bán kính của đường tròn biểu diễn số phức – Mức độ 2. D03 – 3.3 Tìm bán kính của đường tròn biểu diễn số phức – Mức độ 3. D02 – 4.2 Giải phương trình bậc 2 với hệ số thực. Tính toán biểu thức nghiệm – Mức độ 1. D02 – 4.2 Giải phương trình bậc 2 với hệ số thực. Tính toán biểu thức nghiệm – Mức độ 2. D03 – 4.3 Định lí Viet và ứng dụng – Mức độ 1. D03 – 4.3 Định lí Viet và ứng dụng – Mức độ 2. D04 – 4.4 Phương trình quy về bậc hai – Mức độ 2. D05 – 4.5 Các bài toán biểu diễn hình học nghiệm của phương trình – Mức độ 1. D05 – 4.5 Các bài toán biểu diễn hình học nghiệm của phương trình – Mức độ 2. D06 – 4.6 Các bài toán khác về phương trình – Mức độ 3. D02 – 5.2 Phương pháp hình học – Mức độ 4. D03 – 5.3 Phương pháp đại số – Mức độ 3. D03 – 5.3 Phương pháp đại số – Mức độ 4. D03 – 2.3 Xác định góc giữa hai đường thẳng (dùng định nghĩa) – Mức độ 2. D03 – 3.3 Xác định góc giữa mặt phẳng và đường thẳng, hình chiếu – Mức độ 2. D03 – 4.3 Xác định góc giữa hai mặt phẳng – Mức độ 2. D03 – 4.3 Xác định góc giữa hai mặt phẳng – Mức độ 3. D03 – 4.3 Xác định góc giữa hai mặt phẳng – Mức độ 4. D02 – 5.2 Khoảng cách từ một điểm đến một đường thẳng – Mức độ 2. D03 – 5.3 Khoảng cách từ một điểm đến một mặt phẳng – Mức độ 2. D03 – 5.3 Khoảng cách từ một điểm đến một mặt phẳng – Mức độ 3. D04 – 5.4 Khoảng cách giữa hai đường thẳng chéo nhau – Mức độ 2. D04 – 5.4 Khoảng cách giữa hai đường thẳng chéo nhau – Mức độ 3. D01 – 1.1 Nhận diện hình đa diện, khối đa diện – Mức độ 1. D02 – 1.2 Xác định số đỉnh, cạnh, mặt bên của một khối đa diện – Mức độ 1. D02 – 1.2 Xác định số đỉnh, cạnh, mặt bên của một khối đa diện – Mức độ 2. D03 – 1.3 Phân chia, lắp ghép các khối đa diện – Mức độ 2. D05 – 1.5 Phép biến hình trong không gian – Mức độ 1. D03 – 2.3 Tính chất đối xứng – Mức độ 2. D00 – 3.0 Các câu hỏi chưa phân dạng – Mức độ 1. D01 – 3.1 Diện tích xung quanh, diện tích toàn phần của khối đa diện – Mức độ 2. D02 – 3.2 Tính thể tích các khối chóp có cạnh bên vuông góc đáy – Mức độ 2. D02 – 3.2 Tính thể tích các khối chóp có cạnh bên vuông góc đáy – Mức độ 3. D03 – 3.3 Thể tích khối chóp có mặt bên vuông góc đáy – Mức độ 2. D04 – 3.4 Thể tích khối chóp đều – Mức độ 2. D04 – 3.4 Thể tích khối chóp đều – Mức độ 3. D04 – 3.4 Thể tích khối chóp đều – Mức độ 4. D05 – 3.5 Thể tích khối chóp khác – Mức độ 1. D05 – 3.5 Thể tích khối chóp khác – Mức độ 2. D05 – 3.5 Thể tích khối chóp khác – Mức độ 4. D06 – 3.6 Tỉ số thể tích khối chóp – Mức độ 1. D06 – 3.6 Tỉ số thể tích khối chóp – Mức độ 3. D07 – 3.7 Thể tích khối lăng trụ đứng – Mức độ 1. D07 – 3.7 Thể tích khối lăng trụ đứng – Mức độ 2. D07 – 3.7 Thể tích khối lăng trụ đứng – Mức độ 3. D08 – 3.8 Thể tích khối lăng trụ đều – Mức độ 1. D08 – 3.8 Thể tích khối lăng trụ đều – Mức độ 2. D09 – 3.9 Thể tích khối lăng trụ xiên – Mức độ 1. D09 – 3.9 Thể tích khối lăng trụ xiên – Mức độ 4. D11 – 3.11 Thể tích khối đa diện – Mức độ 1. D11 – 3.11 Thể tích khối đa diện – Mức độ 3. D11 – 3.11 Thể tích khối đa diện – Mức độ 4. D12 – 3.12 Các bài toán khác (góc, khoảng cách,…) liên quan đến thể tích khối đa diện – Mức độ 3. D13 – 3.13 Bài toán cực trị – Mức độ 4. D14 – 3.14 Bài toán thực tế về khối đa diện – Mức độ 2. D14 – 3.14 Bài toán thực tế về khối đa diện – Mức độ 3. D14 – 3.14 Bài toán thực tế về khối đa diện – Mức độ 4. D01 – 1.1 Câu hỏi lý thuyết về khối nón – Mức độ 1. D02 – 1.2 Diện tích xung quanh, diện tích toàn phần, Thể tích khối nón khi biết các dữ kiện cơ bản – Mức độ 1. D02 – 1.2 Diện tích xung quanh, diện tích toàn phần, Thể tích khối nón khi biết các dữ kiện cơ bản – Mức độ 2. D02 – 1.2 Diện tích xung quanh, diện tích toàn phần, Thể tích khối nón khi biết các dữ kiện cơ bản – Mức độ 3. D03 – 1.3 Tính độ dài đường sinh, chiều cao, bán kính đáy, khoảng cách, góc, thiết diện của khối nón – Mức độ 2. D04 – 1.4 Khối nón nội tiếp, ngoại tiếp khối đa diện – Mức độ 2. D07 – 1.7 Câu hỏi lý thuyết về khối trụ – Mức độ 1. D08 – 1.8 Diện tích xung quanh, diện tích toàn phần, Thể tích khối trụ khi biết các dữ kiện cơ bản – Mức độ 1. D08 – 1.8 Diện tích xung quanh, diện tích toàn phần, Thể tích khối trụ khi biết các dữ kiện cơ bản – Mức độ 2. D08 – 1.8 Diện tích xung quanh, diện tích toàn phần, Thể tích khối trụ khi biết các dữ kiện cơ bản – Mức độ 3. D09 – 1.9 Tính độ dài đường sinh, chiều cao, bán kính đáy, khoảng cách, góc, thiết diện của khối trụ – Mức độ 1. D09 – 1.9 Tính độ dài đường sinh, chiều cao, bán kính đáy, khoảng cách, góc, thiết diện của khối trụ – Mức độ 4. D10 – 1.10 Khối trụ nội tiếp, ngoại tiếp khối đa diện – Mức độ 2. D12 – 1.12 Bài toán thực tế về khối trụ – Mức độ 1. D12 – 1.12 Bài toán thực tế về khối trụ – Mức độ 2. D12 – 1.12 Bài toán thực tế về khối trụ – Mức độ 3. D13 – 1.13 Bài toán phối hợp giữa khối nón và khối trụ – Mức độ 3. D15 – 1.15 Khối tròn xoay nội tiếp, ngoại tiếp khối đa diện – Mức độ 2. D01 – 2.1 Câu hỏi lý thuyết – Mức độ 1. D03 – 2.3 Tính diện tích mặt cầu, thể tích khối cầu khi biết bán kính – Mức độ 1. D04 – 2.4 Khối cầu ngoại tiếp khối đa diện – Mức độ 2. D04 – 2.4 Khối cầu ngoại tiếp khối đa diện – Mức độ 3. D06 – 2.6 Bài toán tổng hợp về khối nón, khối trụ, khối cầu – Mức độ 3. D07 – 2.7 Bài toán cực trị về khối cầu – Mức độ 4. D01 – 1.1 Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz – Mức độ 1. D01 – 1.1 Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz – Mức độ 2. D02 – 1.2 Tích vô hướng và ứng dụng – Mức độ 1. D02 – 1.2 Tích vô hướng và ứng dụng – Mức độ 2. D04 – 1.4 Xác định tâm, bán kính của mặt cầu – Mức độ 1. D04 – 1.4 Xác định tâm, bán kính của mặt cầu – Mức độ 4. D05 – 1.5 Vị trí tương đối của hai mặt cầu, điểm với mặt cầu – Mức độ 3. D05 – 1.5 Vị trí tương đối của hai mặt cầu, điểm với mặt cầu – Mức độ 4. D06 – 1.6 Viết phương trình mặt cầu – Mức độ 1. D06 – 1.6 Viết phương trình mặt cầu – Mức độ 2. D06 – 1.6 Viết phương trình mặt cầu – Mức độ 3. D07 – 1.7 Các bài toán cực trị – Mức độ 4. D00 – 2.0 Các câu hỏi chưa phân dạng – Mức độ 2. D00 – 2.0 Các câu hỏi chưa phân dạng – Mức độ 4. D01 – 2.1 Xác định VTPT – Mức độ 1. D02 – 2.2 Viết phương trình mặt phẳng dùng đường thẳng – Mức độ 1. D02 – 2.2 Viết phương trình mặt phẳng dùng đường thẳng – Mức độ 2. D02 – 2.2 Viết phương trình mặt phẳng dùng đường thẳng – Mức độ 3. D03 – 2.3 Vị trí tương đối giữa hai mặt phẳng – Mức độ 2. D03 – 2.3 Vị trí tương đối giữa hai mặt phẳng – Mức độ 3. D04 – 2.4 Tìm tọa độ điểm liên quan đến mặt phẳng – Mức độ 1. D05 – 2.5 Góc giữa hai mặt phẳng – Mức độ 3. D06 – 2.6 Khoảng cách từ điểm đến mặt phẳng và bài toán liên quan – Mức độ 2. D07 – 2.7 Vị trí tương đối giữa mặt cầu và mặt phẳng – Mức độ 2. D07 – 2.7 Vị trí tương đối giữa mặt cầu và mặt phẳng – Mức độ 3. D09 – 2.9 Các bài toán cực trị – Mức độ 3. D09 – 2.9 Các bài toán cực trị – Mức độ 4. D10 – 2.10 Điểm thuộc mặt phẳng – Mức độ 1. D11 – 2.11 PTMP không dùng đt – Mức độ 1. D11 – 2.11 PTMP không dùng đt – Mức độ 2. D12 – 2.12 PTMP theo đoạn chắn – Mức độ 1. D13 – 2.13 Hình chiếu của điểm lên mặt phẳng và bài toán liên quan – Mức độ 1. D13 – 2.13 Hình chiếu của điểm lên mặt phẳng và bài toán liên quan – Mức độ 2. D13 – 2.13 Hình chiếu của điểm lên mặt phẳng và bài toán liên quan – Mức độ 3. D00 – 3.0 Các câu hỏi chưa phân dạng – Mức độ 2. D00 – 3.0 Các câu hỏi chưa phân dạng – Mức độ 3. D01 – 3.1 Xác định VTCP của đường thẳng – Mức độ 1. D01 – 3.1 Xác định VTCP của đường thẳng – Mức độ 2. D02 – 3.2 Viết phương trình đường thẳng – Mức độ 1. D02 – 3.2 Viết phương trình đường thẳng – Mức độ 2. D02 – 3.2 Viết phương trình đường thẳng – Mức độ 3. D02 – 3.2 Viết phương trình đường thẳng – Mức độ 4. D03 – 3.3 Tìm tọa độ điểm liên quan đến đường thẳng – Mức độ 1. D03 – 3.3 Tìm tọa độ điểm liên quan đến đường thẳng – Mức độ 2. D03 – 3.3 Tìm tọa độ điểm liên quan đến đường thẳng – Mức độ 3. D07 – 3.7 Vị trí tương đối giữa đường thẳng và mặt phẳng – Mức độ 2. D08 – 3.8 Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu – Mức độ 2. D08 – 3.8 Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu – Mức độ 3. D08 – 3.8 Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu – Mức độ 4. D09 – 3.9 Các bài toán cực trị – Mức độ 3. D10 – 3.10 Điểm thuộc đường thẳng – Mức độ 1. D11 – 3.11 Phương trình đường thẳng liên quan đến góc và khoảng cách – Mức độ 3. D01 – 4.1 Bài toán HHKG – Mức độ 3. D01 – 4.1 Bài toán HHKG – Mức độ 4.

Nguồn: toanmath.com

Đọc Sách

Dự đoán câu điểm 9 trong đề thi THPT Quốc gia 2016 môn Toán - Nguyễn Đại Dương
Tài liệu gồm 23 trang trình bày cách giải cách dạng toán nâng cao có khả năng xuất hiện trong câu điểm 9 đề thi THPT Quốc gia môn Toán. Theo xu hướng mới hiện nay thì câu điểm 9 sẽ có nhiều hướng ra các bài toán khác đi so với bài toán Phương trình – Bất phương trình – Hệ phương trình. Các bài toán có khả năng xuất hiện trong đề thi theo thứ tự sẽ là: + Phương trình – Bất phương trình Chứa tham số. + Phương trình – Bất phương trình Chứa Mũ và Logarit. + Bài toán thực tế. Hy vọng qua tài liệu này các em sẽ trang bị được cho mình kiến thức về các bài toán này nếu lỡ gặp trong phòng thi thì còn có thể làm được. [ads]
Chắt lọc tinh túy 3 câu phân loại trong đề thi thử môn Toán - Tài liệu Lovebook
Tài liệu chắt lọc tinh túy của 3 câu phân loại trong các đề thi thử THPT Quốc gia môn Toán của Lovebook. Điểm đáng chú ý nhất ở cuốn sách này là sự phân bố các tiết học thành một chuỗi bài giảng dành cho đúng một tháng luyện thi cho những học sinh đã có nên tảng tốt. Mỗi bài giảng không nhắc lại những kiến thức cơ bản mà thay vào đó là những bài tập có thể không mới nhưng rất chất bới có sự so sánh, liên hệ và cách phân tích bản chất, cội nguồn của vấn đề. [ads] Mục lục của cuốn sách:
Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio - Lâm Hữu Minh
Tài liệu gồm 122 trang hướng dẫn sử dụng Casio giải các dạng toán trong đề thi THPT Quốc gia, tài liệu do tác giả Lâm Hữu Minh biên soạn. Kỹ thuật CASIO luyện thi THPT Quốc gia là 1 tập hợp những thao tác sử dụng MTBT CASIO theo cách khác bình thường mà thậm chí những người thi Học sinh giỏi giải toán trên máy tính CASIO cũng chưa chắc đã thực hiện được. Bởi vì Kỹ thuật CASIO ở đây được sáng tạo dưới hình thức luyện thi THPT Quốc gia, mà những bài toán trong đề thi Học sinh giỏi giải toán trên máy tính CASIO thì lại thuộc một dạng khác hẳn. Kỹ thuật CASIO hướng đến mục tiêu: + Thứ nhất: luyện cho các bạn sự dẻo tay khi bấm máy tính trong quá trình giải toán. Sau 1 thời gian luyện tập nó sẽ khiến các bạn nhanh nhạy hơn khi cầm máy trước 1 vấn đề dù là nhỏ, dẫn đến tăng tốc độ “CÔNG PHÁ” trước giới hạn của thời gian. [ads] + Thứ hai: đưa ra cho các bạn những phương pháp bấm máy hiệu quả để tránh những thao tác thuộc loại “trâu bò” mà lâu nay nhiều bạn vẫn đang bấm, xử lí đẹp những số liệu xấu, và tìm ra hướng giải ngắn nhất cho bài toán. Dù đề thi ngày càng hướng đến tư duy, suy luận cao và tìm cách hạn chế việc bấm máy, nhưng một khi đã học Kỹ thuật CASIO rồi thì còn lâu Bộ mới hạn chế được các bạn sử dụng máy tính, miễn là được mang máy vào phòng thi! + Thứ ba: luyện cho các bạn sự linh hoạt khi sử dụng máy tính. Đó là niềm đam mê nghiên cứu khám phá những tính năng mới, lối tư duy bài toán kết hợp hài hòa giữa việc giải tay và giải máy, và óc sáng tạo để tìm ra những phương pháp ngày càng ngắn gọn, nhắm đến tối ưu hóa quá trình giải toán. Và từ đó, các bạn có thể tự nghiên cứu mở rộng Kỹ thuật CASIO sang những môn học tự nhiên khác. + Thứ tư: thành thục Kỹ thuật CASIO kết hợp với vốn kiến thức Toán học của các bạn, sẽ tạo nên 1 tâm lý vững vàng khi bước vào kì thi (tất nhiên là không được phép chủ quan đâu đấy).
Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán
Tài liệu “Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán” của nhóm tác giả Nguyễn Phú Khánh, Võ Bá Quốc Cẩn và Trần Quốc Anh hi vọng sẽ mang đến cho bạn đọc những kinh nghiệm quý báu trong việc trình bày các bài toán trong đề thi Quốc gia hiện nay. Tài liệu được scan từ sách gốc, dày 271 trang. [ads]