Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK2 Toán 10 năm học 2019 - 2020 trường THPT Lương Sơn - Hòa Bình

Đề thi HK2 Toán 10 năm học 2019 – 2020 trường THPT Lương Sơn – Hòa Bình gồm 03 trang với 24 câu trắc nghiệm (06 điểm) và 05 câu tự luận (04 điểm), thời gian làm bài 90 phút, đề thi có ma trận đề, đáp án và lời giải chi tiết. Ma trận đề thi HK2 Toán 10 năm học 2019 – 2020 trường THPT Lương Sơn – Hòa Bình: I. Phần trắc nghiệm Nội dungNhận biếtThông hiểuVận dụngBất đẳng thức001Bất phương trình và hệ bất phương trình một ẩn110Dấu của nhị thức bậc nhất111Bất phương trình bậc nhất hai ẩn010Dấu của tam thức bậc hai111Cung và góc lượng giác110Giá trị lượng giác của một cung110Công thức lượng giác010Các hệ thức lượng trong tam giác, giải tam giác111Phương trình đường thẳng121Phương trình đường tròn110Tổng8115 [ads] II. Phần tự luận 1. Xét dấu biểu thức nhị thức bậc nhất, tam thức bậc hai: + Xét dấu nhị thức bậc nhất. + Xét dấu tam thức bậc hai. 2. Cho biết một giá trị lượng giác của cung α, tìm các giá trị lượng giác còn lại. 3. Giải các bất phương trình: + Bất phương trình chứa ẩn ở mẫu đưa về xét dấu biểu thức rồi suy ra nghiệm. + Bất phương trình mức vận dụng. 4. Bài toán hệ thức lượng trong tam giác và giải tam giác. 5. Bài toán về phương trình đường thẳng, đường tròn. + Bài toán lập phương trình tổng quát của đường thẳng. + Bài toán liên quan sự tiếp xúc giữa đường tròn và đường thẳng.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra cuối kỳ 2 Toán 10 năm 2021 - 2022 trường THPT Trường Chinh - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 2 môn Toán 10 năm học 2021 – 2022 trường THPT Trường Chinh, thành phố Hồ Chí Minh; đề thi được biên soạn theo cấu trúc đề tự luận 100%, thời gian làm bài 90 phút (không kể thời gian phát đề).
Đề kiểm tra cuối kỳ 2 Toán 10 năm 2021 - 2022 trường THPT Nguyễn Hiền - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 2 môn Toán 10 năm học 2021 – 2022 trường THPT Nguyễn Hiền, thành phố Hồ Chí Minh; đề thi được biên soạn theo cấu trúc đề tự luận 100%, thời gian làm bài 90 phút (không kể thời gian phát đề).
Đề kiểm tra cuối kỳ 2 Toán 10 năm 2021 - 2022 trường THPT Bình Hưng Hòa - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 2 môn Toán 10 năm học 2021 – 2022 trường THPT Bình Hưng Hòa, thành phố Hồ Chí Minh; đề thi được biên soạn theo cấu trúc đề tự luận 100%, thời gian làm bài 60 phút (không kể thời gian phát đề). Trích dẫn đề kiểm tra cuối kỳ 2 Toán 10 năm 2021 – 2022 trường THPT Bình Hưng Hòa – TP HCM : + Trong mặt phẳng với hệ tọa độ Oxy, viết phương trình đường tròn (C) có tâm I(4;1) và đi qua điểm M(5;6). + Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn 2 2 C x y 1 2 10 và đường thẳng d x y 3 1 0. Viết phương trình đường thẳng tiếp xúc với đường tròn (C) biết song song với đường thẳng d. + Trong mặt phẳng với hệ tọa độ Oxy, cho tứ giác ABCD có A(3;-1) và C(8;4). Điểm D thuộc đường tròn đường kính AC. Đường thẳng đi qua hai điểm B và D có phương trình 5 12 0 x y. Biết rằng hai điểm B, D có hoành độ nguyên và diện tích tứ giác ABCD bằng 15. Viết phương trình đường tròn ngoại tiếp tam giác ABC.
Đề kiểm tra cuối kỳ 2 Toán 10 năm 2021 - 2022 trường THPT Hùng Vương - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 2 môn Toán 10 năm học 2021 – 2022 trường THPT Hùng Vương, thành phố Hồ Chí Minh; đề thi được biên soạn theo cấu trúc đề tự luận 100%, thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn đề kiểm tra cuối kỳ 2 Toán 10 năm 2021 – 2022 trường THPT Hùng Vương – TP HCM : + Định giá trị của tham số m để bất phương trình 2 2 x m x m m 2 2 2 3 4 0 nghiệm đúng với mọi số thực x. + Trong mặt phẳng toạ độ Oxy, cho tam giác ABC với A(1;4), B(3;-1) và C(6;2). a) Lập phương trình tham số của đường thẳng AB. b) Lập phương trình tổng quát của đường cao AH trong tam giác ABC. c) Lập phương trình đường tròn đi qua ba điểm A, B, C. + Trong mặt phẳng toạ độ Oxy, cho đường tròn (C) có phương trình 2 2 x y 1 1 1. a) Xác định tâm I và bán kính R của đường tròn (C). b) Lập phương trình tiếp tuyến của đường tròn (C) biết tiếp tuyến song song với đường thẳng d x y 2 2022 0.