Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 9 năm 2018 - 2019 phòng GDĐT Ba Đình - Hà Nội

Ngày 07 tháng 05 năm 2019, phòng Giáo dục và Đào tạo quận Ba Đình, Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2018 – 2019, kỳ thi nhằm giúp học sinh rèn luyện thường xuyên để củng cố và nâng cao các kiến thức Toán THCS để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 – 2020. Đề khảo sát chất lượng Toán 9 năm 2018 – 2019 phòng GD&ĐT Ba Đình – Hà Nội được biên soạn dưới dạng tự luận, đề gồm 1 trang với 6 bài toán, học sinh có 90 phút (không tính khoảng thời gian giám thị coi thi phát đề) để hoàn thành bài thi KSCL Toán 9. [ads] Trích dẫn đề khảo sát chất lượng Toán 9 năm 2018 – 2019 phòng GD&ĐT Ba Đình – Hà Nội : + Một phòng họp có 300 ghế ngồi, được xếp thành một số hàng có số ghế bằng nhau. Buổi họp hôm đó có 378 người đến dự họp nên ban tổ chức đã kê thêm 3 hàng ghế và mỗi hàng ghế phải xếp thêm 1 ghế, mới đủ chỗ ngồi. Hỏi lúc đầu phòng họp có bao nhiêu hàng ghế và mỗi hàng ghế có bao nhiêu ghế, biết số hàng ghế ban đầu không vượt quá 20. + Cho phương trình: x^2 – (x – 3)x – m + 2 = 0 (x là ẩn số). a) Chứng minh rằng phương trình luôn có nghiệm với mọi giá trị của m. b) Tìm m để phương trình có ít nhất một nghiệm dương. + Cho đường tròn (O;R) và dây BC cố định (BC < 2R), BF là đường kính. A là điểm di chuyển trên cung lớn BC (A khác B, C) sao cho tam giác ABC có ba góc nhọn, các đường cao AD và CE của tam giác ABC cắt nhau tại H. 1) Chứng minh tứ giác AEDC là tứ giác nội tiếp. 2) Chứng minh HF đi qua trung điểm G của đoạn thẳng AC. 3) Chứng minh AF/sinDEC không đổi. 4) Cho BC = 1,5R; gọi I là hình chiếu của G trên AB. Hãy tính bán kính đường tròn ngoại tiếp tam giác IBC theo R.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra Toán 9 năm 2023 - 2024 trường chuyên KHTN - Hà Nội (Vòng 2 - Đợt 1)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra kiến thức môn Toán 9 năm học 2023 – 2024 trường THPT chuyên KHTN, Đại học Khoa học Tự nhiên, thành phố Hà Nội (Vòng 2 – Đợt 1); kỳ thi được diễn ra vào ngày 21 tháng 01 năm 2024. Trích dẫn Đề kiểm tra Toán 9 năm 2023 – 2024 trường chuyên KHTN – Hà Nội (Vòng 2 – Đợt 1) : + Cho tam giác ABC nhọn, đường cao BE, CF cắt nhau tại H (E, F lần lượt nằm trên cạnh CA, AB). Gọi M là trung điểm BC. Gọi K là hình chiếu của H trên AM. 1) Chứng minh rằng bốn điểm B, C, K, H cùng thuộc một đường tròn. 2) Gọi (J) và (L) lần lượt là đường tròn ngoại tiếp các tam giác MBF và MCE. Chứng minh rằng (J) và (L) cùng đi qua K. 3) Gọi P là điểm đối xứng của A qua BC. Chứng minh rằng phân giác các góc BPC và JML đồng quy với JL. + Với x, y, z là những số nguyên dương thỏa mãn x + y + z = 100. Tìm giá trị nhỏ nhất của biểu thức P = x!y!z!.
Đề kiểm tra Toán 9 năm 2023 - 2024 trường chuyên KHTN - Hà Nội (Vòng 1 - Đợt 1)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra kiến thức môn Toán 9 năm học 2023 – 2024 trường THPT chuyên KHTN, Đại học Khoa học Tự nhiên, thành phố Hà Nội (Vòng 1 – Đợt 1); kỳ thi được diễn ra vào ngày 20 tháng 01 năm 2024. Trích dẫn Đề kiểm tra Toán 9 năm 2023 – 2024 trường chuyên KHTN – Hà Nội (Vòng 1 – Đợt 1) : Cho tam giác nhọn ABC nội tiếp trong đường tròn (O). Các điểm E và F lần lượt nằm trên các cạnh CA và AB sao cho EF song song với BC. Các đường thẳng BE và CF theo thứ tự cắt các tiếp tuyến tại C và B của (O) lần lượt tại K và L. 1) Đường thẳng qua B và song song với AC theo thứ tự cắt KC và KA tại X và Y. Chứng minh rằng hai tam giác XBC và BCA đồng dạng. 2) Đường thẳng qua C song song với AB theo thứ tự cắt LB và LA lần lượt tại Z và T. Chứng minh rằng XB AF ZC AE. 3) Đường thẳng qua E song song với AB lần lượt cắt AK và AL tại M và N. Đường thẳng qua F song song với AC lần lượt cắt AK và AL tại P và Q. Chứng minh rằng bốn điểm M, N, P và Q cùng thuộc vào một đường tròn.
Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát, đánh giá chất lượng giáo dục môn Toán 9 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Ninh Bình. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 – 2024 sở GD&ĐT Ninh Bình : + Cho hàm số y = −x + 3 có đồ thị là đường thẳng (d). a. Xác định hệ số góc và tung độ gốc của đường thẳng (d). b. Vẽ (d) trên hệ trục tọa độ Oxy. Gọi A, B lần lượt là giao điểm của (d) với trục Ox và Oy. Tính diện tích OAB (Đơn vị đo trên các trục tọa độ là cm). + Giá cước taxi của một hãng xe taxi khi quãng đường di chuyển x(km) trong khoảng từ 1km đến 30km được cho bởi công thức: y = 10000 + 13600(x − 1) (đồng). Nếu một hành khách phải trả 350 nghìn đồng thì hành khách đó đã di chuyển bao nhiêu km? + Núi Kỳ Lân cùng với 3 ngọn núi khác được mệnh danh là “Tứ đại danh sơn” của vùng đất Ninh Bình. Sở dĩ núi có tên “Kỳ Lân” vì ngọn núi này có hình đầu con Kỳ Lân nhìn về phía Bắc, sườn núi có chỗ hõm tạo hình giống hàm của con Kỳ Lân, vách núi nhấp nhô, những cây cổ thụ cùng các loại hoa đua nhau rậm rạp tốt tươi tạo thành như bờm của con Kỳ Lân. Một người đứng trên mặt đất, cách Núi Kỳ Lân một khoảng bằng 100m, nhìn thấy ngọn núi với góc nâng 26° so với phương nằm ngang. Biết mắt quan sát của người đó cách mặt đất 1,6 m, hãy tính chiều cao của ngọn núi theo đơn vị m (Kết quả làm tròn đến hàng đơn vị).
Đề khảo sát Toán 9 tháng 01 năm 2024 trường THCS Ngọc Lâm Bồ Đề - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 tháng 01 năm 2024 trường THCS Ngọc Lâm và THCS Bồ Đề, quận Long Biên, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Ba ngày 16 tháng 01 năm 2024. Trích dẫn Đề khảo sát Toán 9 tháng 01 năm 2024 trường THCS Ngọc Lâm & Bồ Đề – Hà Nội : + Giải bài toán bằng cách lập phương trình: Giá tiền một chiếc bếp từ đôi và một chiếc nồi chiên hơi nước ban đầu tổng cộng là 21 triệu đồng. Nhân dịp sắp đến tết nguyên đán Giáp Thìn 2024, cửa hàng giảm giá bếp từ đôi 15% và giảm giá nồi chiên hơi nước 10% so với giá ban đầu nên bác An đi mua hai sản phẩm này chỉ hết 18,3 triệu đồng. Tính giá tiền một chiếc bếp từ đôi và một nồi chiên hơi nước lúc ban đầu khi chưa giảm giá? + Một cầu thủ sút bóng bị va vào góc trên bên phải của cầu môn và dội ngược trở lại. Biết cầu môn cao 2,44m và khoảng cách từ vị trí sút bóng đến chân cầu môn là 25m. Tính góc tạo bởi đường đi của bóng so với mặt đất (số đo góc làm tròn đến phút). + Cho đường tròn (O; R) và một điểm M cố định nằm ngoài đường tròn (O). Từ M kẻ các tiếp tuyến MA, MB tới (O) (A, B là các tiếp điểm), MO cắt AB tại H. Một đường thẳng d thay đổi đi qua M nhưng không đi qua O cắt đường tròn (O) tại hai điểm N, P (N nằm giữa M và P). Gọi I là trung điểm của NP. a) Chứng minh bốn điểm M, A, I, O cùng thuộc một đường tròn. b) Chứng minh tích OH.OM không đổi. c) Tiếp tuyến của (O) tại N và P cắt nhau tại F. Chứng minh IOM đồng dạng HOF và điểm F chuyển động trên một đường thẳng cố định khi đường thẳng d quay quanh M mà vẫn thỏa mãn các yêu cầu đề bài.