Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2018 2019 phòng GD ĐT Quận 3 TP HCM

Nội dung Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2018 2019 phòng GD ĐT Quận 3 TP HCM Bản PDF - Nội dung bài viết Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2018 2019 phòng GD ĐT Quận 3 TP HCM Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2018 2019 phòng GD ĐT Quận 3 TP HCM Vừa qua, phòng Giáo dục và Đào tạo Ủy Ban Nhân Dân Quận 3, thành phố Hồ Chí Minh đã tổ chức kỳ thi kiểm tra học kỳ 2 môn Toán lớp 9 năm học 2018 – 2019. Đề thi được biên soạn theo dạng đề tự luận với 7 bài toán, học sinh có 90 phút để hoàn thành bài thi HK2 Toán lớp 9. Trích dẫn đề thi HK2 Toán lớp 9 năm học 2018 – 2019 phòng GD&ĐT Quận 3 – TP HCM: + Ông Ba có chín trăm triệu đồng. Ông dùng một phần số tiền này để gởi ngân hàng với lãi suất 7,5% một năm. Phần còn lại, ông góp vốn với một người bạn để kinh doanh. Sau một năm, ông thu về số tiền cả vốn và lãi từ hai nguồn trên là một tỉ hai mươi triệu đồng. Biết rằng tiền lãi khi kinh doanh bằng 25% số tiền vốn ban đầu. Hỏi ông Ba đã gởi ngân hàng bao nhiêu tiền và góp bao nhiêu tiền với người bạn để kinh doanh? + Cô Năm muốn xây một bể nước bê tông hình trụ có chiều cao là 1,6m; bán kính lòng bể (tính từ tâm bể đến mép trong của bể) là r = 1m, bề dày của thành bể là 10cm và bề dày của đáy bể là 5cm. Hỏi: a) Bể có thể chứa được nhiều nhất bao nhiêu lít nước? b) Nếu cô Năm có 1,3 triệu đồng thì có đủ tiền mua bê tông tươi để xây bể nước trên không? + Cuối học kì I, số học sinh giỏi của lớp 9A bằng 20% số học sinh cả lớp. Đến cuối học kì II, lớp có thêm 2 bạn đạt học sinh giỏi nên số học sinh giỏi ở học kì II bằng 25% số học sinh cả lớp. Hỏi lớp 9A có bao nhiêu học sinh? Đề thi HK2 Toán lớp 9 năm học 2018 – 2019 tại phòng GD&ĐT Quận 3 TP HCM rất đa dạng và thú vị, đòi hỏi học sinh phải áp dụng kiến thức lí thuyết vào thực hành để giải quyết các bài toán phức tạp. Qua đó, giúp học sinh rèn luyện kỹ năng tư duy logic, khả năng xử lý vấn đề một cách linh hoạt và sáng tạo.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra cuối kỳ 2 Toán 9 năm 2021 - 2022 sở GDĐT Bến Tre
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 2 môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bến Tre; kỳ thi được diễn ra vào thứ Ba ngày 26 tháng 04 năm 2022. Trích dẫn đề kiểm tra cuối kỳ 2 Toán 9 năm 2021 – 2022 sở GD&ĐT Bến Tre : + Một mảnh đất hình chữ nhật có diện tích 240 m2. Nếu tăng chiều rộng 3m và giảm chiều dài 4m thì diện tích mảnh đất không đổi. Tính kích thước của mảnh đất. + Tính thể tích của hình cầu có đường kính bằng 6 cm. + Trên nửa đường tròn đường kính AB, lấy hai điểm I, Q sao cho I thuộc cung AQ. Gọi C là giao điểm hai tia Al và BQ; H là giao điểm của hai dây AQ và BI. a) Chứng minh tứ giác CIHQ nội tiếp; b) Chứng minh: CI.AI = HI.BI; c) Biết AB = 2R. Tính giá trị biểu thức: M = Al.AC + BQ.BC theo R.
Đề kiểm tra cuối học kỳ 2 Toán 9 năm 2021 - 2022 sở GDĐT Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kỳ 2 môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bình Dương; kỳ thi được diễn ra vào thứ Tư ngày 27 tháng 04 năm 2022. Trích dẫn đề kiểm tra cuối học kỳ 2 Toán 9 năm 2021 – 2022 sở GD&ĐT Bình Dương : + Cho phương trình x2 – 2x – 8 = 0 (x là ẩn số) a) Chứng tỏ rằng phương trình trên có hai nghiệm phân biệt x1 và x2. b) Không giải phương trình, hãy tính giá trị của biểu thức: A. + Cho hàm số y = x2 có đồ thị là (P) và đường thẳng (D): y = x + 2. a) Vẽ (P) và (D) trên cùng một hệ trục tọa độ Oxy. b) Tìm tọa độ giao điểm của (P) và (D) bằng phép tính. + Người ta muốn lát gạch một nền nhà hình chữ nhật có chu vi 32m. Biết chiều rộng bằng 2/3 chiều dài. Gạch dùng để lát nền là loại gạch hình vuông có cạnh bằng 0,8m. Tính số gạch cần dùng.
Đề cuối học kỳ 2 Toán 9 năm 2021 - 2022 phòng GDĐT Long Biên - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 2 môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo quận Long Biên, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 20 tháng 04 năm 2022. Trích dẫn đề cuối học kỳ 2 Toán 9 năm 2021 – 2022 phòng GD&ĐT Long Biên – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc lập hệ phương trình: Tìm một số tự nhiên có hai chữ số biết rằng: Tổng hai chữ số của số đó bằng 9, nếu đổi chỗ hai chữ số cho nhau thì ta đuợc một số mới (có hai chữ số) bé hơn số ban đầu 27 đơn vị. + Cho phương trình bậc hai x2 – 2x + 2m – 3 = 0 (x là ẩn). Xác định các giá trị của m để phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn điều kiện 1/x12 + 1/x22 = 10/9. + Cho tam giác ABC có ba góc nhọn(AB < AC) nội tiếp đường tròn (O;R). Vẽ các đường cao AI, BK của tam giác ABC (I thuộc BC, K thuộc AC). Gọi H là giao điểm của AI và BK và M là trung điểm của BC, kẻ HE vuông góc với AM tại E. 1) Chứng minh rằng bốn điểm A, H, E, K cùng thuộc một đường tròn. 2) Chứng minh: IB.IC = IH.IA. 3) Chứng minh: AEK = ACM và ME.MA < R2.
Đề học kỳ 2 Toán 9 năm 2021 - 2022 phòng GDĐT Hai Bà Trưng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kỳ 2 môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo quận Hai Bà Trưng, thành phố Hà Nội. Trích dẫn đề học kỳ 2 Toán 9 năm 2021 – 2022 phòng GD&ĐT Hai Bà Trưng – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Quãng đường từ Hà Nội đến Hải Phòng dài 120 km. Một ô tô và một xe máy xuất phát cùng một lúc từ Hà Nội để đi đến Hải Phòng. Vận tốc của ô tô lớn hơn vận tốc xe máy 20 km/giờ nên ô tô đến nơi sớm hơn xe máy 1 giờ. Tính vận tốc mỗi xe, biết vận tốc mỗi xe không thay đổi trên cả quãng đường. + Hộp sữa đặc có đường là một hình trụ có đường kính đáy bằng 7cm, chiều cao 8cm. Hỏi bên trong hộp chứa được bao nhiêu mi-li-lít sữa? (bỏ qua độ dày của vỏ hộp, lấy pi = 3,14). + Trong mặt phẳng tọa độ Oxy cho parabol (P): y = x2 và đường thẳng (d): y = mx + 3. a) Tìm tọa độ giao điểm của đường thẳng (d) và parabol (P) với m = 2. b) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt. Gọi hai giao điểm lần lượt là A(x1;y1) và B(x2;y2). Tìm m để y1 + y2 = 4(x1 + x2) + 3.