Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán phương trình đường thẳng và một số bài toán liên quan

Trong quá trình luyện tập với các đề thi thử THPT Quốc gia môn Toán, chắc chắn không ít lần các em bắt gặp các bài toán về chủ đề phương trình đường thẳng và một số bài toán liên quan đến phương trình đường thẳng, bởi đây là một nội dung quan trọng của chương trình Toán 12 và chương trình Toán THPT nói chung. Nhằm giúp các em học sinh khối 12 có thể tự ôn tập theo các chuyên đề riêng biệt, thầy Nguyễn Bảo Vương đã tổng hợp và biên soạn tài liệu các dạng toán phương trình đường thẳng và một số bài toán liên quan, với các bài toán được phân loại theo từng dạng toán cụ thể, có đáp án và lời giải chi tiết. Mục lục tài liệu các dạng toán phương trình đường thẳng và một số bài toán liên quan: PHẦN A . CÂU HỎI Dạng toán 1. Xác định VTCP (Trang 2). Dạng toán 2. Xác định phương trình đường thẳng (Trang 4). + Dạng toán 2.1 Xác định phương trình đường thẳng cơ bản (Trang 4). + Dạng toán 2.2 Xác định phương trình đường thẳng khi biết yếu tố vuông góc (Trang 6). + Dạng toán 2.3 Xác định phương trình đường thẳng khi biết yếu tố song song (Trang 10). + Dạng toán 2.4 Xác định một số phương trình đường thẳng đặc biệt (phân giác, trung tuyến…) (Trang 11). Dạng toán 3. Một số bài toán liên quan giữa điểm với đường thẳng (Trang 14). + Dạng toán 3.1 Bài toán liên quan điểm (hình chiếu) thuộc đường, khoảng cách (Trang 14). + Dạng toán 3.2 Bài toán cực trị (Trang 17). Dạng toán 4. Một số bài toán liên quan giữa đường thẳng với mặt phẳng (Trang 19). + Dạng toán 4.1 Bài toán liên quan khoảng cách, góc (Trang 19). + Dạng toán 4.2 Bài toán phương trình mặt phẳng, giao tuyến 2 mặt phẳng (Trang 20). + Dạng toán 4.3 Bài toán giao điểm (hình chiếu, đối xứng) của đường thẳng với mặt phẳng (Trang 22). + Dạng toán 4.4 Bài toán cực trị (Trang 25). Dạng toán 5. Một số bài toán liên quan giữa đường thẳng thẳng với đường thẳng (Trang 30). Dạng toán 6. Một số bài toán liên quan giữa đường thẳng với mặt cầu (Trang 32). Dạng toán 7. Một số bài toán liên quan giữa điểm – mặt – đường – cầu (Trang 32). + Dạng toán 7.1 Bài toán tìm điểm (Trang 32). + Dạng toán 7.2 Bài toán tìm mặt phẳng (Trang 34). + Dạng toán 7.3 Bài toán tìm đường thẳng (Trang 34). + Dạng toán 7.4 Bài toán tìm mặt cầu (Trang 35). + Dạng toán 7.5 Bài toán cực trị (Trang 37). [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng toán 1. Xác định VTCP (Trang 40). Dạng toán 2. Xác định phương trình đường thẳng (Trang 41). + Dạng toán 2.1 Xác định phương trình đường thẳng cơ bản (Trang 41). + Dạng toán 2.2 Xác định phương trình đường thẳng khi biết yếu tố vuông góc (Trang 43). + Dạng toán 2.3 Xác định phương trình đường thẳng khi biết yếu tố song song (Trang 48). + Dạng toán 2.4 Xác định một số phương trình đường thẳng đặc biệt (phân giác, trung tuyến…) (Trang 50). Dạng toán 3. Một số bài toán liên quan giữa điểm với đường thẳng (Trang 58). + Dạng toán 3.1 Bài toán liên quan điểm (hình chiếu) thuộc đường, khoảng cách (Trang 58). + Dạng toán 3.2 Bài toán cực trị (Trang 61). Dạng toán 4. Một số bài toán liên quan giữa đường thẳng với mặt phẳng (Trang 65). + Dạng toán 4.1 Bài toán liên quan khoảng cách, góc (Trang 65). + Dạng toán 4.2 Bài toán phương trình mặt phẳng, giao tuyến 2 mặt phẳng (Trang 67). + Dạng toán 4.3 Bài toán giao điểm (hình chiếu, đối xứng) của đường thẳng với mặt phẳng (Trang 69). + Dạng toán 4.4 Bài toán cực trị (Trang 78). Dạng toán 5. Một số bài toán liên quan giữa đường thẳng thẳng với đường thẳng (Trang 95). Dạng toán 6. Một số bài toán liên quan giữa đường thẳng với mặt cầu (Trang 97). Dạng toán 7. Một số bài toán liên quan giữa điểm – mặt – đường – cầu (Trang 99). + Dạng toán 7.1 Bài toán tìm điểm (Trang 99). + Dạng toán 7.2 Bài toán tìm mặt phẳng (Trang 102). + Dạng toán 7.3 Bài toán tìm đường thẳng (Trang 104). + Dạng toán 7.4 Bài toán tìm mặt cầu (Trang 106). + Dạng toán 7.5 Bài toán cực trị (Trang 112).

Nguồn: toanmath.com

Đọc Sách

Các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 2) - Nguyễn Xuân Chung
Tài liệu gồm 99 trang, được biên soạn bởi thầy giáo Nguyễn Xuân Chung, tuyển chọn và hướng dẫn phương pháp giải các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 2), giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. PHẦN 2 : CÁC BÀI TOÁN TẬP HỢP ĐIỂM; GTLN – GTNN. Trong phần 2 này chúng ta nghiên cứu các bài toán có nội dung về quỹ tích và giá trị lớn nhất, giá trị nhỏ nhất. Thông thường: Các bài toán tập hợp điểm cũng chính là các bài toán về min – max bởi vì khi tập hợp điểm thỏa mãn điều kiện nhất định thì sẽ đạt min – max. Tuy nhiên: Bài toán tập hợp điểm thiên về vị trí tương đối và tính toán, còn bài toán về min – max thiên về khảo sát hàm số và bất đẳng thức. Từ đó chúng ta cũng thấy được phương pháp giải có đặc trưng riêng. + Bài toán tập hợp điểm: Thường sử dụng phương pháp véc tơ, các định lý trong tam giác, hình bình hành, sự đối xứng, song song, vuông góc. + Bài toán min – max: Thường sử dụng phương pháp khử dần ẩn (Thêm biến, đổi biến, dồn biến), khảo sát cực trị, bất đẳng thức B.C.S, Mincopxki. Như vậy trong phần này các bài toán có mức độ Vận dụng – Vận dụng cao. Để giải nhanh thì chúng ta không chỉ nắm vững kiến thức mà còn sử dụng một số công thức tính nhanh, kỹ năng sử dụng CASIO. Nếu chỉ làm tự luận thì cũng có kết quả nhưng thi trắc nghiệm thì thời gian không nhiều!. Các em cần tính tổng thời gian của quy trình giải một bài toán khó như sau: + Đọc hiểu đề và yêu cầu của bài toán: Đọc để hiểu nội dung của bài toán là gì? + Tái hiện kiến thức: Trong bài toán chúng ta cần thiết những kiến thức nào? + Xác định các yếu tố cần giải: Chẳng hạn mặt cầu thì cần biết tâm, bán kính. + Biến đổi, tính toán: Đây là quy trình cuối cùng dẫn đến kết quả và trả lời, có nhiều khi phải vẽ hình minh họa thì càng mất nhiều thời gian. Trong phần này, các bài toán có chọn lọc và được biên soạn theo chủ đề: Điểm – mặt phẳng, Điểm – Mặt cầu, Điểm – Đường thẳng, và tổ hợp của các yếu tố trên. Trong phần 1, tôi đã đưa ra một số kiến thức bổ xung và công thức tính nhanh, nên phần này tôi không nêu ra. Tuy nhiên, trong phần này cũng có kiến thức bổ xung hữu ích để giúp chúng ta giải nhanh, từ đó mới tiết kiệm được thời gian toàn bài thi. Đặc biệt trong phần này ta nghiên cứu bài toán mà tạm gọi là “Định luật phản xạ ánh sáng đối với gương phẳng”. I. BỔ XUNG ‐ BÀI TOÁN VỀ TÂM TỈ CỰ. II. BÀI TOÁN VỀ TỔ HỢP VÉC TƠ. III. BÀI TOÁN VỀ QUỸ TÍCH – VỊ TRÍ TƯƠNG ĐỐI. IV. BÀI TOÁN VỀ TỔNG – HIỆU KHOẢNG CÁCH. V. BÀI TOÁN TỔNG HỢP CUỐI PHẦN 2. VI. PHỤ LỤC.
Các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 1) - Nguyễn Xuân Chung
Tài liệu gồm 112 trang, được biên soạn bởi thầy giáo Nguyễn Xuân Chung, tuyển chọn và hướng dẫn phương pháp giải các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 1), giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. PHẦN 1 : KIẾN THỨC CƠ BẢN VÀ BỔ XUNG. CÔNG THỨC TÍNH NHANH. Trong phần này chúng ta nghiên cứu các bài toán điển hình trong hệ tọa độ Oxyz chỉ thiên về tính toán: Nghĩa là từ các số liệu và dữ kiện đã cho, chúng ta đi thiết lập các phương trình hay các hệ thức có liên quan và giải ra đáp số cần tìm. Phần này là các bài toán sưu tầm được chọn lọc và có tính tổng hợp, nghĩa là tổ hợp của nhiều bài toán nhỏ, bao gồm nhiều kiến thức có liên quan. Nói cách khác: Đây là các bài toán để ôn tập và luyện thi. Chúng ta có thể phân dạng, loại toán theo nhiều cách hay theo các hình thức nào đó, một bài toán có thể được nằm trong nhiều dạng toán khác nhau, do đó không thể định dạng chung cho tất cả các bài toán. Trong phần này tôi cố gắng biên soạn các bài toán theo các chủ đề, hay theo phương pháp giải hoặc theo dạng toán đặc trưng của nó. Để đáp ứng ôn tập và luyện thi, đặc biệt là thi trắc nghiệm, thì ngoài các kiến thức cơ bản và cách giải tự luận, yêu cầu các em cần bổ xung thêm các kiến thức, một số kết quả hay một số công thức tính nhanh, kết hợp với máy tính CASIO. I. CÁC BÀI TOÁN CƠ BẢN VỀ VÉC TƠ VÀ TỌA ĐỘ. II. CÁC BÀI TOÁN CƠ BẢN VỀ MẶT CẦU. III. CÁC BÀI TOÁN CƠ BẢN VỀ MẶT PHẲNG. IV. MẶT PHẲNG THEO ĐOẠN CHẮN VÀ ỨNG DỤNG. V. MẶT PHẲNG TRUNG TRỰC – PHÉP CHIẾU VUÔNG GÓC VÀ ỨNG DỤNG. VI. BÀI TOÁN CƠ BẢN VỀ ĐƯỜNG THẲNG TRONG KHÔNG GIAN. VII. HÌNH CHIẾU VUÔNG GÓC CỦA ĐIỂM LÊN ĐƯỜNG THẲNG. VIII. BÀI TẬP TỔNG HỢP CUỐI PHẦN 1. IX. PHỤ LỤC: PHÂN TÍCH MỘT SỐ DẠNG TOÁN VÀ PHƯƠNG PHÁP GIẢI.
Bài giảng phương pháp tọa độ trong không gian - Nguyễn Hoàng Việt
Tài liệu gồm 100 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tóm tắt lý thuyết cần nhớ, phân loại và phương pháp giải các dạng toán chuyên đề phương pháp tọa độ trong không gian Oxyz (Toán 12 phần Hình học chương 3). Chương 3 . PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN 1. Bài 1. TỌA ĐỘ VÉC TƠ – TỌA ĐỘ ĐIỂM 1. A LÝ THUYẾT CẦN NHỚ 1. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN 3. + Dạng 1. Tọa độ véc tơ 3. + Dạng 2. Tọa độ điểm 6. + Dạng 3. Hình chiếu, đối xứng qua các trục, các mặt toạ độ 11. + Dạng 4. Tính diện tích và thể tích 12. C BÀI TẬP TỰ LUYỆN 14. Bài 2. PHƯƠNG TRÌNH MẶT CẦU 17. A LÝ THUYẾT CẦN NHỚ 17. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 17. + Dạng 1. Xác định tâm I, bán kính r của mặt cầu cho trước 17. + Dạng 2. Mặt cầu dạng khai triển (S): x2 + y2 + z2 − 2ax − 2by − 2cz + d = 0 18. + Dạng 3. Lập phương trình mặt cầu 20. + Dạng 4. Vị trí tương đối 24. C BÀI TẬP TỰ LUYỆN 26. Bài 3. PHƯƠNG TRÌNH MẶT PHẲNG 29. A LÝ THUYẾT CẦN NHỚ 29. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 31. + Dạng 1. Xác định véc tơ pháp tuyến và điểm thuộc mặt phẳng 31. + Dạng 2. Lập phương trình mặt phẳng khi biết các yếu tố liên quan 31. + Dạng 3. Phương trình theo đoạn chắn 35. + Dạng 4. Khoảng cách và góc 36. + Dạng 5. Vị trí tương đối của hai mặt phẳng 38. + Dạng 6. Vị trí tương đối của mặt phẳng với mặt cầu 39. C BÀI TẬP TỰ LUYỆN 43. Bài 4. PHƯƠNG TRÌNH ĐƯỜNG THẲNG 46. A LÝ THUYẾT CẦN NHỚ 46. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 49. + Dạng 1. Xác định điểm thuộc và véc tơ chỉ phương của đường thẳng 49. + Dạng 2. Viết phương trình đường thẳng khi biết vài yếu tố liên quan 50. + Dạng 3. Vị trí tương đối của hai đường thẳng 53. + Dạng 4. Vị trí tương đối của đường thẳng và mặt phẳng 55. + Dạng 5. Góc và khoảng cách 56. + Dạng 6. Hình chiếu H của điểm M lên mặt phẳng (P) 58. + Dạng 7. Hình chiếu H của điểm M lên đường thẳng d 59. C BÀI TẬP TỰ LUYỆN 61. Bài 5. MỘT SỐ BÀI TOÁN CỰC TRỊ 66. A PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 66. + Dạng 1. Tìm max – min bằng cách thiết lập hàm và khảo sát hàm 66. + Dạng 2. Tìm max – min bằng cách sử dụng mối quan hệ giữa đường cao và đường xiên 68. + Dạng 3. Tìm max – min bằng cách quy về tìm hình chiếu của điểm lên mặt 70. + Dạng 4. Tìm max – min bằng cách quy về tìm điều kiện ba điểm thẳng hàng 73. + Dạng 5. Tìm max min liên quan đến phương trình theo đoạn chắn 74. B BÀI TẬP TỰ LUYỆN 76. Bài 6. BỘ ĐỀ ÔN TẬP CUỐI CHƯƠNG 80. A ĐỀ SỐ 1 80. B ĐỀ SỐ 2 83. C ĐỀ SỐ 3 85. D ĐỀ SỐ 4 88. E ĐỀ SỐ 5 91. Bài 7. ĐÁP ÁN TRẮC NGHIỆM CÁC CHỦ ĐỀ 94. A ĐÁP ÁN TRẮC NGHIỆM BÀI 1 94. B ĐÁP ÁN TRẮC NGHIỆM BÀI 2 94. C ĐÁP ÁN TRẮC NGHIỆM BÀI 3 94. D ĐÁP ÁN TRẮC NGHIỆM BÀI 4 94. E ĐÁP ÁN TRẮC NGHIỆM BÀI 5 94. F ĐÁP ÁN TRẮC NGHIỆM CÁC ĐỀ TỔNG ÔN 94.
Chuyên đề phương pháp tọa độ trong không gian - Phạm Hùng Hải
Tài liệu gồm 97 trang, được biên soạn bởi thầy giáo Phạm Hùng Hải, tổng hợp lý thuyết, các dạng toán và bài tập chuyên đề phương pháp tọa độ trong không gian Oxyz, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3. CHƯƠNG 3 . HÌNH HỌC KHÔNG GIAN OXYZ 1. BÀI 1. HỆ TỌA ĐỘ TRONG KHÔNG GIAN 1. A Định nghĩa hệ trục tọa độ 1. B Tọa độ véc-tơ 1. C Tọa độ điểm 2. D Tích có hướng của hai véc-tơ 2. E Phương trình mặt cầu 3. BÀI 2. PHƯƠNG TRÌNH MẶT PHẲNG 25. A Kiến thức cơ bản cần nhớ 25. BÀI 3. PHƯƠNG TRÌNH ĐƯỜNG THẲNG 49. A Kiến thức cơ bản cần nhớ 49. B Xác định các yếu tố cơ bản của đường thẳng 51. C Góc 53. D Khoảng cách 54. E Vị trí tương đối 55. + Dạng 1. Vị trí tương đối giữa đường thẳng và mặt phẳng 56. + Dạng 2. Vị trí giữa đường thẳng và mặt cầu 58. + Dạng 3. VỊ TRÍ TƯƠNG ĐỐI CỦA ĐƯỜNG THẲNG VÀ ĐƯỜNG THẲNG 59. F Viết phương trình đường thẳng 60. G Hình chiếu, điểm đối xứng và bài toán liên quan (vận dụng cao) 73. H Bài toán cực trị và một số bìa toán khác (vận dụng cao) 81. + Dạng 4. Tâm tỉ cự 81. + Dạng 5. Bài toán cực trị liên quan đến thẳng hàng 85.