Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2020 sở GDĐT Quảng Ninh

Đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2020 sở GD&ĐT Quảng Ninh (Bảng A và Bảng B) được biên soạn theo dạng đề tự luận, có lời giải chi tiết và thang điểm; kỳ thi được diễn ra vào ngày 01 tháng 12 năm 2020. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2020 sở GD&ĐT Quảng Ninh : + Lớp 12B lập Kế hoạch tiết kiệm 5 triệu đồng tiền tiêu vặt trong 5 tháng để ủng hộ đồng bào bị thiên tai như sau: Vào các ngày mùng 1 của các tháng 1, 2, 3, 4, 5 của năm 2021 mỗi học sinh trong lớp tiết kiệm số tiền giống nhau là A đồng và nộp lại cho lớp trưởng để lớp trưởng gửi vào ngân hàng theo hình thức lãi kép (lãi nhập vào gốc để tính lãi ở tháng tiếp theo) với lãi suất r (r > 0) trên một tháng (lãi suất không đổi trong suốt thời gian gửi). Hãy xây dựng công thức tính A theo r biết rằng lớp có 40 học sinh và ngày rút tiền ủng hộ là ngày 01/6/2021 (chỉ rút duy nhất một lần). + Ở một thành phố biển Q có một hòn đảo, trên đảo có điểm O cố định. Người ta cần xây dựng các con đường nối từ hai ga xe X và Y trên đất liền tới một điểm T cách điểm O một khoảng r. Cho biết với ϕ là góc nhọn thỏa mãn. Dự kiến đường đi từ X tới T là đường thẳng hai làn xe, còn đường đi từ Y tới T là đường thẳng bốn làn xe. Chi phí xây dựng cho một ki-lô-mét đường hai làn xe và bốn làn xe lần lượt là 1 triệu USD và 2 triệu USD. Tìm vị trí điểm T sao cho tổng chi phí xây dựng cả hai con đường là nhỏ nhất và tính chi phí này. + Cho đa giác đều (H) có 24 đỉnh. Gọi S là tập hợp các tam giác có 3 đỉnh lấy từ 24 đỉnh của (H). Chọn ngẫu nhiên một tam giác từ S, tính xác suất để tam giác chọn được không phải là tam giác vuông.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 12 cấp tỉnh năm 2022 - 2023 sở GDĐT Đồng Tháp
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 02 tháng 04 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm.
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 - 2023 sở GDĐT Sóc Trăng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Sóc Trăng; đề thi có đáp án và hướng dẫn chấm điểm.
Đề học sinh giỏi tỉnh Toán 12 năm 2022 - 2023 sở GDĐT Bà Rịa - Vũng Tàu
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 13 tháng 12 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được biên soạn bởi Nhóm Toán VDC & HSG THPT. Trích dẫn Đề học sinh giỏi tỉnh Toán 12 năm 2022 – 2023 sở GD&ĐT Bà Rịa – Vũng Tàu : + Cho hàm số 3 2 yx m x m x m 2 1 31 22 có đồ thị là (Cm). Tìm tất cả các giá trị tham số m để (Cm) cắt trục hoành tại 3 điểm phân biệt A(2;0), B và C sao cho trong hai điểm B, C có một điểm nằm trong và một điểm nằm ngoài đường tròn 2 2 Cx y 1. + Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B, tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với đáy. Gọi M N lần lượt là trung điểm của SA và BC. Biết AB a và MN tạo với mặt đáy một góc 60°. Tính thể tích khối chóp S ABC theo a. + Cho hàm số f x xác định, liên tục trên R và thoả mãn fx x x cot sin 2 cos 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số gx f xf x trên đoạn [−1;1].
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 - 2023 sở GDĐT Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán THPT cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thanh Hóa; đề thi gồm 08 trang với 50 câu trắc nghiệm, thời gian làm bài 180 phút (không kể thời gian phát đề); đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi Diễn Đàn Giáo Viên Toán). Trích dẫn Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 – 2023 sở GD&ĐT Thanh Hóa : + Cho mặt cầu (S) có tâm O và A là một điểm nằm trên (S). Gọi I K là hai điểm trên đoạn OA sao cho OI IK KA. Các mặt phẳng (P), (Q) lần lượt đi qua I, K cùng vuông góc với OA và cắt mặt cầu (S) theo các đường tròn có bán kính lần lượt là 1r và 2r. Tính tỷ số 2 1 r r. + Cho hình trụ có đáy là hai đường tròn tâm O và tâm O’, bán kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy có tâm O lấy hai điểm A D sao cho AD a 15; gọi C là hình chiếu vuông góc của D lên mặt phẳng chứa đường tròn tâm (O’); trên đường tròn tâm (O’) lấy điểm B (AB CD chéo nhau). Đặt α là góc giữa AB với đáy. Tính tanα khi thể tích khối tứ diện ABCD đạt giá trị lớn nhất. + Cho hình vuông kích cỡ 4 x 4 như hình vẽ. Sắp xếp ngẫu nhiên các số tự nhiên từ 1 đến 16 vào 16 ô vuông. Tính xác suất để có tổng bốn số ở các ô trong cùng một hàng hay cùng một cột đều là một số lẻ.