Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán quan hệ vuông góc trong không gian - Lê Duy Hiền

Tài liệu gồm 38 trang phân dạng và hướng dẫn giải các dạng toán quan hệ vuông góc trrong không gian, tài liệu do thầy Lê Duy Hiền biên soạn. Trong môn toán ở trường phổ thông phần hình học không gian giữ một vai trò, vị trí hết sức quan trọng. Ngoài việc cung cấp cho học sinh kiến thức, kĩ năng giải toán hình học không gian, còn rèn luyện cho học sinh đức tính, phẩm chất của con người lao động mới: cẩn thận, chính xác, có tính kỉ luật, tính phê phán, tính sáng tạo, bồi dưỡng óc thẩm mĩ, tư duy sáng tạo cho học sinh. Tuy nhiên trong quá trình giảng dạy tôi nhận thấy học sinh lớp 11 rất e ngại học môn hình học không gian vì các em nghĩ rằng nó trừu tượng, thiếu tính thực tế. Chính vì thế mà có rất nhiều học sinh học yếu môn học này, về phần giáo viên cũng gặp không ít khó khăn khi truyền đạt nội dung kiến thức và phương pháp giải các dạng bài tập hình học không gian. [ads] Hình học không gian là một phần rất quan trọng trong nội dung thi đại học của Bộ giáo dục, nếu học sinh không nắm kỹ bài thì các em sẽ gặp nhiều lúng túng khi làm hai câu trong về hình học không gian trong đề thi đại học. Qua nhiều năm giảng dạy môn học này tôi cũng đúc kết được một số kinh nghiệm nhằm giúp các em tiếp thu kiến thức được tốt hơn, từ đó mà chất lượng giảng dạy cũng như học tập của học sinh ngày được nâng lên. Do đây là phần nội dung kiến thức mới nên nhiều học sinh còn chưa quen với tính tư duy trừu tượng của nó, nên tôi nghiên cứu nội dung này nhằm tìm ra những phương pháp truyền đạt phù hợp với học sinh, bên cạnh cũng nhằm tháo gỡ những vướng mắc, khó khăn mà học sinh thường gặp phải với mong muốn nâng dần chất lượng giảng dạy nói chung và môn hình học không gian nói riêng. Từ lý do trên tôi đã khai thác, hệ thống hóa các kiến thức, tổng hợp các phương pháp thành một chuyên đề: Các dạng Toán về quan hệ vuông góc trong không gian

Nguồn: toanmath.com

Đọc Sách

Bài toán về góc trong không gian
Tài liệu gồm 56 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán về góc trong không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 11 trong quá trình học tập chương trình Toán 11 phần Hình học chương 3. Vấn đề 1: GÓC GIỮA HAI ĐƯỜNG THẲNG. 1. Định nghĩa góc giữa hai đường thẳng. 2. Cách xác định góc giữa hai đường thẳng. 3. Phương pháp tính góc giữa hai đường thẳng. Vấn đề 2: GÓC GIỮA ĐƯỜNG THẲNG VÀ MẶT PHẲNG. + Dạng 1: Góc giữa cạnh bên và mặt đáy. + Dạng 2: Góc giữa cạnh bên và mặt phẳng chứa đường cao. + Dạng 3: Góc giữa đường cao và mặt bên. + Dạng 4: Góc giữa cạnh bên và mặt bên. Vấn đề 3: GÓC GIỮA HAI MẶT PHẲNG. + Dạng 1: Góc giữa mặt bên và mặt đáy. + Dạng 2: Góc giữa hai mặt bên. + Dạng 3: Sử dụng định lý hình chiếu để tính góc giữa hai mặt phẳng. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Toàn tập góc và khoảng cách vận dụng cao
Tài liệu gồm 62 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển tập hệ thống bài tập trắc nghiệm chuyên đề góc và khoảng cách vận dụng cao (VDC) lớp 11 THPT. Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 1). Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 2). Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 3). Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 4). Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 5). Vận dụng cao góc nhị diện – (phần 1). Vận dụng cao góc nhị diện – (phần 2). Vận dụng cao góc nhị diện – (phần 3). Vận dụng cao góc nhị diện – (phần 4). Vận dụng cao góc nhị diện – (phần 5). Vận dụng cao góc nhị diện – (phần 6). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 1). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 2). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 3). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 4). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 5). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 6). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 1). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 2). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 3). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 4). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 5). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 6). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 7). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 8). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 9). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 10). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 11). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 12). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 13). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 14).
Phân loại và phương pháp giải bài tập vectơ trong không gian, quan hệ vuông góc
Tài liệu gồm 173 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tóm tắt lý thuyết, phân loại và phương pháp giải bài tập vectơ trong không gian, quan hệ vuông góc, giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 3 (Toán 11). BÀI 1 . VECTƠ TRONG KHÔNG GIAN. Dạng 1. Biểu diễn vectơ. Dạng 2. Đẳng thức vectơ. Dạng 3. Đồng phẳng của ba vectơ. Dạng 4. Tìm điểm thỏa mãn đẳng thức vectơ. BÀI 2 . HAI ĐƯỜNG THẲNG VUÔNG GÓC. Dạng 1. Tính góc giữa hai đường thẳng. Dạng 2. Chứng minh hai đường thẳng vuông góc trong không gian. BÀI 3 . ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG. Dạng 1. Câu hỏi lý thuyết. Dạng 2. Chứng minh đường thẳng vuông góc với mặt phẳng. Từ đó suy ra đường thẳng vuông góc với đường thẳng. Dạng 3. Xác định góc – hình chiếu – tính độ dài. Dạng 4. Thiết diện. BÀI 4 . HAI MẶT PHẲNG VUÔNG GÓC. Dạng 1. Câu hỏi lý thuyết. Dạng 2. Chứng minh hai mặt phẳng vuông góc. Dạng 3. Tính góc giữa hai mặt phẳng. Dạng 4. Thiết diện. BÀI 5 . KHOẢNG CÁCH. Dạng 1. Khoảng cách từ một điểm đến đường thẳng. Dạng 2. Khoảng cách từ một điểm đến mặt phẳng. Dạng 3. Khoảng cách giữa hai mặt phẳng song song, khoảng cách từ đường thẳng đến mặt phẳng. Dạng 4. Khoảng cách giữa hai đường thẳng chéo nhau.
Hướng dẫn giải các dạng toán vectơ trong không gian, quan hệ vuông góc
Tài liệu gồm 113 trang, hướng dẫn giải các dạng toán vectơ trong không gian, quan hệ vuông góc trong chương trình Hình học 11 chương 3. BÀI 1 . VECTƠ TRONG KHÔNG GIAN. + Dạng 1.1. Xác định véctơ và các khái niệm có liên quan. + Dạng 1.2. Chứng minh đẳng thức véctơ. + Dạng 1.3. Tìm điểm thỏa mãn đẳng thức vecto. + Dạng 1.4. Tích vô hướng của hai véctơ. + Dạng 1.5. Chứng minh ba véctơ đồng phẳng. + Dạng 1.7. Ứng dụng véctơ chứng minh bài toán hình học. BÀI 2 . HAI ĐƯỜNG THẲNG VUÔNG GÓC. + Dạng 2.1. Xác định góc giữa hai vec-tơ. + Dạng 2.2. Xác định góc giữa hai đường thẳng trong không gian. + Dạng 2.3. Sử dụng tính chất vuông góc trong mặt phẳng. + Dạng 2.4. Hai đường thẳng song song cùng vuông góc với một đường thẳng thứ ba. BÀI 3 . ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG. + Dạng 3.1. Đường thẳng vuông góc với mặt phẳng. + Dạng 3.2. Góc giữa đường thẳng và mặt phẳng. + Dạng 3.3. Xác định thiết diện của một khối đa diện cắt bởi mặt phẳng đi qua một điểm và vuông góc với một đường thẳng cho trước. BÀI 4 . HAI MẶT PHẲNG VUÔNG GÓC. + Dạng 4.1. Tìm góc giữa hai mặt phẳng. + Dạng 4.2. Tính diện tích hình chiếu của đa giác. + Dạng 4.3. Chứng minh hai mặt phẳng vuông góc. + Dạng 4.4. Thiết diện chứa một đường thẳng và vuông góc với một mặt phẳng. BÀI 5 . KHOẢNG CÁCH. + Dạng 5.1. Khoảng cách từ một điểm tới một đường thẳng. + Dạng 5.2. Khoảng cách từ một điểm đến một mặt phẳng. + Dạng 5.3. Khoảng cách giữa đường và mặt song song – Khoảng cách giữa hai mặt song song. + Dạng 5.4. Đoạn vuông góc chung, khoảng cách giữa hai đường thẳng chéo nhau. BÀI 6 . ĐỀ KIỂM TRA CHƯƠNG 3.