Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra lần 3 Toán 9 năm 2023 - 2024 trường chuyên Hà Nội - Amsterdam

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng lần 3 môn Toán 9 năm học 2023 – 2024 trường THPT chuyên Hà Nội – Amsterdam, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 25 tháng 04 năm 2024. Trích dẫn Đề kiểm tra lần 3 Toán 9 năm 2023 – 2024 trường chuyên Hà Nội – Amsterdam : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Nhân dịp nghỉ lễ, một trường học cho học sinh đi dã ngoại bằng các xe khách. Có hai loại xe, lần lượt chứa được 29 và 45 người. Có tất cả 15 xe, tất cả các xe đều đủ số người theo sức chứa. Biết rằng có 611 người tham gia chuyến dã ngoại. Hỏi số lượng mỗi loại xe là bao nhiêu? + Một vật trang trí bằng thủy tinh có dạng một hình trụ và một nửa hình cầu. Phần hình trụ có bán kính đáy 5 cm và chiều cao 6 cm. Phần hình cầu có bán kính 5 cm (như hình bên). Tính thể tích của vật trang trí đó và làm tròn kết quả đến hàng phần trăm của cm3 (lấy pi ~ 3,14). + Cho tam giác ABC có ba góc nhọn, AB < AC, nội tiếp đường tròn (O) và H là trực tâm. Đường thẳng AH cắt BC tại D. Gọi M là trung điểm của BC. Lấy điểm E trên cung nhỏ AC của đường tròn (O) sao cho EA < BC, vẽ dây EF song song với AC (F thuộc (O)). Đường thẳng qua O, song song với BE cắt BC tại N. Gọi S là trung điểm của HF. Vẽ đường kính AK của (O), KF cắt BC tại G. 1) Chứng minh rằng tứ giác ADGF là tứ giác nội tiếp. 2) Chứng minh rằng SMC = HAF. 3) Chứng minh rằng tam giác OMN đồng dạng với tam giác AFK và AS vuông góc SN.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 năm 2018 - 2019 phòng GDĐT Phúc Yên - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát Toán 9 năm 2018 – 2019 phòng GD&ĐT Phúc Yên – Vĩnh Phúc; đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn đề khảo sát Toán 9 năm 2018 – 2019 phòng GD&ĐT Phúc Yên – Vĩnh Phúc : + Cho tam giác ABC vuông ở A (AB > AC), đường cao AH. Trên nửa mặt phẳng bờ BC có chứa điểm A, vẽ nửa đường tròn tâm O đường kính BH cắt AB tại E; vẽ nửa đường tròn tâm O’ đường kính CH cắt AC tại F. Gọi I là giao điểm của AH và EF. a) Chứng minh AE.AB = AF.AC. b) Chứng minh EF là tiếp tuyến của đường tròn (O). c) Chứng minh BI vuông góc AO’. + Cho các số thực dương a, b, c thỏa mãn điều kiện a + b + c = 3. Chứng minh rằng? + Cho đường tròn (O) đường kính bằng 6cm và dây MN bằng 2cm. Khoảng cách từ O đến dây MN bằng?
Đề khảo sát chất lượng Toán 9 năm 2018 - 2019 trường THCS Chu Văn An - Hà Nội lần 1
Đề khảo sát chất lượng Toán 9 năm 2018 – 2019 trường THCS Chu Văn An – Hà Nội lần 1 được biên soạn nhằm kiểm tra các kiến thức Toán 9 học sinh đã học, đề gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 90 phút, đây là hình thức đề tương tự với các đề thi vào 10 môn Toán, kỳ thi được diễn ra vào ngày 30 tháng 09 năm 2018.
Đề khảo sát chất lượng Toán 9 năm 2018 trường THPT chuyên Hà Nội - Amsterdam
Đề khảo sát chất lượng Toán 9 năm 2018 trường THPT chuyên Hà Nội – Amsterdam gồm 1 trang với 5 bài toán tự luận, đề nhằm đánh giá kiến thức học sinh khối lớp 9 giai đoạn giữa HK2 năm học 2017 – 2018, đồng thời tạo cơ hội để các em được thử sức, rèn luyện chuẩn bị cho kỳ thi vào lớp 10 năm học 2018 – 2019 môn Toán, đề thi có lời giải chi tiết .
Đề thi khảo sát Toán 9 năm học 2017 - 2018 phòng GD và ĐT Ba Đình - Hà Nội
Đề thi khảo sát Toán 9 năm học 2017 – 2018 phòng GD và ĐT Ba Đình – Hà Nội gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 90 phút, kỳ thi được tổ chức vào ngày 03/03/2018 nhằm giúp học sinh khối 9 tại các trường THCS Phan Chu Trinh và THCS Mạc Đĩnh Chi (Hà Nội) rèn luyện chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán, đề thi có lời giải chi tiết . Trích dẫn đề thi khảo sát Toán 9 : + Để hoàn thành một công việc theo dự định, cần một số công nhân làm trong một số ngày nhất định. Nếu bớt đi 2 công nhân thì phải mất thêm 3 ngày mới có thể hoàn thành công việc. Nếu tăng thêm 5 công nhân thì công việc hoàn thành sớm được 4 ngày. Hỏi theo dự định, cần bao nhiêu công nhân và làm bao nhiêu ngày? + Cho phương trình x^2 – 2(m – 1)x – m^2 + m – 1 = 0 (x là ẩn số). a) Giải phương trình đã cho khi m = 2. b) Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt với mọi số thực m. [ads] + Cho tam giác ABC nhọn nội tiếp đường tròn (O), đường cao AN, CK của tam giác ABC cắt nhau tại H. 1. Chứng minh tứ giác BKHN là tứ giác nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác BKHN. 2. Chứng minh góc KBH = KCA. 3. Gọi E là trung điểm của cạnh AC. Chúng minh KE là tiếp tuyến của đường tròn (I). 4. Đường tròn (I) cắt (O) tại M. Chứng minh BM vuông góc với ME.