Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hình hộp chữ nhật

Nội dung Chuyên đề hình hộp chữ nhật Bản PDF - Nội dung bài viết Chuyên đề hình hộp chữ nhật Chuyên đề hình hộp chữ nhật Tài liệu này bao gồm 12 trang, tập trung vào tóm tắt lý thuyết quan trọng cần hiểu về chuyên đề hình hộp chữ nhật. Ngoài ra, tài liệu còn cung cấp hướng dẫn phân loại dạng toán và cách giải, kèm theo việc lựa chọn các bài tập từ cơ bản đến nâng cao trong chuyên đề này. Đồng thời, có đáp án và lời giải chi tiết giúp học sinh hiểu rõ hơn cách giải các bài tập. Tài liệu này hỗ trợ học sinh trong quá trình học tập chương trình Hình học lớp 8, đặc biệt là chương 4 về hình lăng trụ đứng và hình chóp đều. Nội dung bài giảng cung cấp kiến thức nền vững và đáp ứng nhu cầu học tập của học sinh. Phần phương pháp giải toán chia thành 2 dạng: Chứng minh các tính chất của hình hộp chữ nhật và tính toán các yếu tố liên quan đến hình hộp chữ nhật. Qua tài liệu này, học sinh sẽ nắm vững kiến thức cơ bản và nâng cao về hình hộp chữ nhật, từ đó phát triển kỹ năng giải bài tập và áp dụng kiến thức vào thực tế. Đồng thời, tài liệu cũng giúp học sinh rèn luyện khả năng tư duy logic và phân tích trong quá trình giải toán hình học.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề phân thức đại số
Tài liệu gồm 14 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phân thức đại số, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Tìm điều kiện để phân thức có nghĩa. Một phân thức đại số (hay nói gọn là phân thức) là một biểu thức có dạng A/B với A và B là các đa thức, B khác đa thức 0. Dạng 2 . Chứng minh một phân thức luôn có nghĩa. Bước 1. Lựa chọn 1 trong 3 cách biến đổi thường dùng sau: + Cách 1. Biến đổi vế trái thành vế phải. + Cách 2. Biến đổi vế phải thành vế trái. + Cách 3. Biến đổi đồng thời hai vế. Bước 2. Phân tích tử thức và mẫu thức thành nhân tử. Bước 3. Rút gọn bằng cách triệt tiêu nhân từ chung và sử dụng định nghĩa hai phân thức bằng nhau nếu cần, từ đó suy ra điều phải chứng minh. Dạng 3 . Tìm đa thức trong đẳng thức. Bước 1. Phân tích tử thức và mẫu thức thành nhân tử ở hai vế. Bước 2. Triệt tiêu các nhân tử chung và rút ra đa thức cần tìm. Dạng 4 . Tìm x để giá trị phân thức bằng 0. Đặt điều kiện cho mẫu khác 0, rút ra điều kiện của x. Nhân mẫu thức với 0 vế phải để triệt tiêu mẫu. Cho tử bằng 0 để tìm giá trị của x so sánh với điều kiện kết luận giá trị của x. Dạng 5 . Chứng minh đẳng thức có điều kiện. Bước 1. Xuất phát từ điều phải chứng minh, áp dụng tính chất của hai phân thức bằng nhau. Bước 2. Thu gọn biểu thức và dựa vào điều kiện đề bài cho để lập luận.
Chuyên đề chia đa thức một biến đã sắp xếp
Tài liệu gồm 18 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề chia đa thức một biến đã sắp xếp, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 1: Phép nhân và phép chia các đa thức. A. BÀI GIẢNG CỦNG CỐ KIẾN THỨC NỀN I. Lý thuyết II. Các dạng bài tập Dạng 1 : Chia đa thức một biến đã sắp xếp (phép chia hết). + Bước 1: Nhân số chia với một biểu thức sao cho giá trị khi nhân bằng giá trị mũ cao nhất của số bị chia. + Bước 2: Lấy đa thức bị chia trừ đi tích vừa nhân được. + Bước 3: Quay về bước 1 đến khi dư cuối cùng bằng 0. Dạng 2 : Chia đa thức một biến đã sắp xếp (phép chia có dư). + Bước 1: Nhân số chia với một biểu thức sao cho giá trị khi nhân bằng giá trị mũ cao nhất của số bị chia. + Bước 2: Lấy đa thức bị chia trừ đi tích vừa nhân được. + Bước 3: Quay về bước 1 đến khi đa thức dư có bậc nhỏ hơn bậc của đa thức chia. Dạng 3 : Chia đa thức một biến đã sắp xếp có chứa tham số m. + Bước 1: Nhân số chia với một biểu thức sao cho giá trị khi nhân bằng giá trị mũ cao nhất của số bị chia. + Bước 2: Lấy đa thức bị chia trừ đi tích vừa nhân được. + Bước 3: Quay về bước 1 đến khi đa thức dư cuối cùng bằng 0 hoặc đa thức dư có bậc nhỏ hơn bậc của đa thức chia. Dạng 4 : Tìm m để số bị chia chia hết cho số chia. Phương pháp 1: Thực hiện phép chia. + Bước 1: Thực hiện chia đa thức chứa tham số ở dạng 3. + Bước 2: Để số bị chia chia hết cho số chia thì phần dư bằng 0. + Bước 3: Giải tìm ra m. Phương pháp 2: Hệ số bất định. + Bước 1: Dựa vào bậc cao nhất của số bị chia và số chia ta gọi dạng tổng quát của thương. + Bước 2: Nhân thương với số chia và chuyển biểu thức về dạng tổng quát. + Bước 3: Cho các hạng tử của biểu thức ở bước 2 và số bị chia bằng nhau, giải tìm được giá trị cần tìm. Phương pháp 3: Phương pháp trị số riêng. + Bước 1: Đưa phép chia về dạng A(x) = B(x).Q(x). + Bước 2: Thay giá trị x để B(x) = 0 vào phương trình trên. + Bước 3: Giải ra ta tìm được giá trị cần tìm. B. PHIẾU BÀI TỰ LUYỆN Dạng 1: Chia đa thức một biến đã sắp xếp. Dạng 2: Sắp xếp đa thức theo luỹ thừa giảm dần rồi thực hiện phép chia. Dạng 3: Tìm x. Dạng 4: Phân tích đa thức thành nhân tử rồi thực hiện phép chia. Dạng 5: Sử dụng hằng đẳng thức để thực hiện phép chia. Dạng 6: Tìm đa thức M. Dạng 7: Tìm a và b để A chia hết cho B.
Chuyên đề chia đơn thức cho đơn thức, chia đa thức cho đơn thức
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề chia đơn thức cho đơn thức, chia đa thức cho đơn thức, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 1: Phép nhân và phép chia các đa thức. A. TRỌNG TÂM CẦN ĐẠT 1. Chia đơn thức cho đơn thức. 2. Chia đa thức cho đơn thức. B. CÁC DẠNG BÀI TẬP Dạng 1 : Chia đơn thức cho đơn thức. Muốn chia đơn thức A cho đơn thức B ta làm như sau: + Bước 1: Chia hệ số của đơn thức A cho hệ số của đơn thức B. + Bước 2: Chia lũy thừa của từng biến trong A cho lũy thừa của cùng biến đó trong B. + Bước 3: Nhân các kết quả vừa tìm được với nhau. Dạng 2 : Chia đa thức cho đơn thức. Muốn chia đa thức A cho đơn thức B ta làm như sau: Chia mỗi hạng tử của A cho B rồi cộng các kết quả với nhau. C. PHIẾU BÀI TỰ LUYỆN
Chuyên đề phân tích đa thức thành nhân tử
Tài liệu gồm 32 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phân tích đa thức thành nhân tử, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 1: Phép nhân và phép chia các đa thức. A. LÝ THUYẾT 1. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung. 2. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức. 3. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử. 4. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp. B. CÁC DẠNG BÀI TẬP MINH HỌA CƠ BẢN + Dạng 1: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung. + Dạng 2: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức. + Dạng 3: Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử. + Dạng 4: Phân tích đa thức thành nhân tử bằng phương pháp đặt ẩn phụ. + Dạng 5: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp. + Dạng 6: Tìm x với điều kiện cho trước. C. CÁC DẠNG BÀI TỔNG HỢP MINH HỌA NÂNG CAO D. PHIẾU BÀI TỰ LUYỆN