Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Vĩnh Phúc

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi dành cho thí sinh thi vào lớp chuyên Toán và chuyên Tin học. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc : + Tìm tất cả các cặp số nguyên (x;y) thỏa mãn đẳng thức (y + 2)x2 + 1 = y2. Tìm tất cả các số nguyên dương n sao cho 3n + 1, 11n + 1 là các số chính phương và n + 3 là số nguyên tố. + Cho tam giác ABC có ba góc nhọn, AB < AC và nội tiếp đường tròn (O). Đường thẳng AO cắt đường thẳng BC tại điểm E. Gọi M là trung điểm của đoạn thẳng BC. Đường thẳng AM cắt đường tròn (O) tại điểm N (N khác A). Các tiếp tuyến của đường tròn (O) tại các điểm B, C cắt nhau tại điểm D. a) Chứng minh AOND là tứ giác nội tiếp và tia DO là phân giác của góc ADN. b) Đường thẳng AD cắt đường tròn (O) tại điểm P (P khác A). Đường tròn ngoại tiếp tam giác AME cắt đường tròn (O) tại điểm F (F khác A). Chứng minh AB.PC = AC.PB và ba điểm E, F, P thẳng hàng. c) Kẻ đường kính AK của đường tròn (O). Chứng minh ba điểm D, K, F thẳng hàng và đường thẳng FN đi qua trung điểm của đoạn thẳng DM. + Sau khi tổ chức một trận đấu giao hữu giữa hai đội bóng lớp 9A và 9B, Ban tổ chức có 11 gói kẹo muốn chia cho 2 đội. Mỗi đội được chia 5 gói làm phần thưởng và 1 gói Ban tổ chức giữ lại để liên hoan. Biết rằng dù chọn bất kì gói nào để giữ lại, Ban tổ chức luôn có thể chia 10 gói còn lại cho 2 đội mà tổng số viên kẹo trong 5 gói cho mỗi đội là bằng nhau. Chứng minh rằng 11 gói kẹo đó phải có số viên kẹo bằng nhau.

Nguồn: toanmath.com

Đọc Sách

Bộ đề tham khảo tuyển sinh lớp 10 năm 2020 - 2021 môn Toán sở GDĐT TP HCM
Tài liệu gồm 52 trang, tuyển tập một số đề tham khảo tuyển sinh lớp 10 năm học 2020 – 2021 môn Toán sở Giáo dục và Đào tạo thành phố Hồ Chí Minh. Trích dẫn bộ đề tham khảo tuyển sinh lớp 10 năm 2020 – 2021 môn Toán sở GD&ĐT TP HCM: + Lúc 6 giờ 15 phút, Nam đi bộ từ nhà đến trường với vận tốc trung bình là 6km/ giờ. Đến cổng trường Nam mới phát hiện quên đem theo quyển tập bài tập toán nên em vội vàng quay về nhà để lấy tập với vận tốc nhanh hơn vận tốc lúc đi là 3 km/ giờ và cũng đi với vận tốc này để đến trường. Nam đến trường lúc 7 giờ kém 3 phút. Tính quãng đường từ nhà Nam đến trường? + Cho (O; R) đường kính BC. M thuộc (O) sao cho MB < MC. Tiếp tuyến tại M của (O) cắt tia CB tại A. Vẽ dây MN ⊥ BC tại H. a) Chứng minh AH.AO = AB.AC. b) Gọi K là giao điểm của MB và CN. Chứng minh ABNK nội tiếp. c) Tính diện tích phần tứ giác AMCK nằm ngoài (O) trong trường hợp MB = R. [ads] + Người ta cắt một khúc gỗ hình trụ bởi một mặt phẳng song song với trục OO’ của hình trụ, ta được mặt cắt là hình chữ nhật ABCD như hình vẽ bên, biết AOB = 90 độ, AB = 3√2cm, AD = 10cm. Tính diện tích xung quanh và thể tích lúc đầu của khúc gỗ hình trụ đó. Cho biết trong hình trụ: diện tích xung quanh là S = 2πRh, thể tích V = πR2h và π ≈ 3,14.
Đề minh họa vào lớp 10 môn Toán năm 2020 - 2021 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 9 đề minh họa tuyển sinh vào lớp 10 THPT môn Toán năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề gồm 01 trang với 04 câu trắc nghiệm (chiếm 02 điểm) và 04 câu tự luận (chiếm 08 điểm), thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề minh họa vào lớp 10 môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Phúc : + Cho parabol (P): y = x^2 và đường thẳng (d): y = 5x – m + 1 (với m là tham số). Tìm tất cả các giá trị của m để đường thẳng (d) cắt parabol (P) tại 2 điểm phân biệt có hoành độ x1, x2 thoả mãn (x1x2 + 1)^2 = 20(x1 + x2). + Hai đội công nhân của một công ty cùng sản xuất một lượng khẩu trang chống dịch comid 19, họ dự định cùng làm trong 15 ngày sẽ xong. Nhưng thực tế họ cùng làm được 6 ngày thì đội II nhận nhiệm vụ đặc biệt phải đi làm công việc khác, do đó đội I làm một mình trong 24 ngày nữa thì hoàn thành công việc. Hỏi nếu làm một mình thì mỗi đội làm xong trong bao nhiêu ngày? + Cho tam giác nhọn ABC, các đường cao AD và BE cắt nhau tại H. Từ điểm A kẻ các tiếp tuyến AM, AN với đường tròn (O) đường kính BC (M, N là các tiếp điểm). a) Chứng minh tứ giác AMON là tứ giác nội tiếp. b) Chứng minh AN^2 = AE.AC và AH.AD = AE.AC. c) Chứng minh ba điểm H, M, N thẳng hàng.
Đề tham khảo tuyển sinh lớp 10 môn Toán năm 2020 - 2021 sở GDĐT Tây Ninh
Nhằm giúp học sinh lớp 9 ôn tập để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 năm học 2020 – 2021, vừa qua, sở Giáo dục và Đào tạo tỉnh Tây Ninh công bố đề tham khảo kỳ thi tuyển sinh vào lớp 10 hệ THPT năm học 2020 – 2021 môn Toán dành cho học sinh theo học chương trình chuẩn (không chuyên Toán). Đề tham khảo tuyển sinh lớp 10 môn Toán năm 2020 – 2021 sở GD&ĐT Tây Ninh gồm 01 trang với 10 bài toán dạng tự luận, mỗi câu tương ứng với 01 điểm, thời gian làm bài thi là 120 phút. Trích dẫn đề tham khảo tuyển sinh lớp 10 môn Toán năm 2020 – 2021 sở GD&ĐT Tây Ninh : + Cho hình thoi ABCD có AC = a, BD = 3a. Tính độ dài AB theo a. + Một mảnh vườn hình chữ nhật có chu vi bằng 28m và độ dài đường chéo bằng 2 lần chiều dài của mảnh vườn đó. Tính diện tích của mảnh vườn đã cho. [ads] + Tìm a và b để đường thẳng d: y = ax + b cắt đường thẳng d: y = bx – a tại điểm M(2;1). + Cho tam giác ABC (AB < AC) và BAC = 60°. Trên cạnh AC lấy điểm D sao cho CD = AB. Gọi M, N lần lượt là trung điểm của AD và BC. Tính CMN. + Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của AB và AD, BN cắt CM tại P. Tính tỉ số giữa diện tích tam giác BMP và diện tích hình bình hành ABCD.
Đề khảo sát Toán thi vào 10 năm 2019 - 2020 phòng GDĐT Đan Phượng - Hà Nội
Thứ Hai ngày 08 tháng 06 năm 2020, phòng Giáo dục và Đào tạo Đan Phượng, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán dành cho học sinh lớp 9, để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2019 – 2020. Đề khảo sát Toán thi vào 10 năm 2019 – 2020 phòng GD&ĐT Đan Phượng – Hà Nội gồm 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề gồm 01 trang. Trích dẫn đề khảo sát Toán thi vào 10 năm 2019 – 2020 phòng GD&ĐT Đan Phượng – Hà Nội : + Giải toán bằng cách lập phương trình hoặc hệ phương trình: Hưởng ứng phong trào Tết trồng cây, chi đoàn thanh niên dự định trồng 30 cây trong một thời gian nhất định. Do mỗi giờ chi đoàn trồng nhiều hơn dự định 5 cây nên đã hoàn thành công việc trước dự định 20 phút và trồng thêm được 10 cây nữa. Tính số cây mà chi đoàn dự định trồng trong mỗi giờ. [ads] + Nhân dịp ngày 8/3, bạn Hoa định mua một chiếc nón lá để tặng cô Anna – cô giáo dạy tiếng Anh. Chiếc nón lá là một hình nón với đường kính của đáy là 40cm, độ dài đường sinh của hình nón là 30cm. Hãy tính diện tích lá cần dùng để phủ kín một lớp lên bề mặt của chiếc nón. + Cho parabol (P): y = x^2 và đường thẳng (d): y = mx – m + 1. a) Chứng minh rằng đường thẳng (d) và parabol (P) luôn có điểm chung với mọi giá trị của m. b) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm nằm về hai phía của trục tung.