Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG Toán 12 năm 2019 - 2020 cụm các trường THPT tỉnh Bắc Ninh

Nằm trong kế hoạch ôn tập, bồi dưỡng đội tuyển học sinh giỏi môn Toán 12 để chuẩn bị cho kỳ thi HSG Toán 12 năm học 2019 – 2020, vừa qua, một số trường THPT thuộc sở Giáo dục và Đào tạo tỉnh Bắc Ninh đã tổ chức kỳ thi giao lưu học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2019 – 2020. Đề giao lưu HSG Toán 12 năm học 2019 – 2020 cụm các trường THPT tỉnh Bắc Ninh mã đề 132, đề được biên soạn theo dạng trắc nghiệm với 50 câu, thời gian làm bài 90 phút; đề thi này cũng rất hữu ích dành các em học sinh khối 12 trong quá trình ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán. Trích dẫn đề giao lưu HSG Toán 12 năm 2019 – 2020 cụm các trường THPT tỉnh Bắc Ninh : + Một đội xây dựng cần hoàn thiện một hệ thống cột trụ tròn của một cửa hàng kinh doanh gồm 10 chiếc. Trước khi hoàn thiện mỗi chiếc cột là một khối bê tông cốt thép hình lăng trụ lục giác đều có cạnh 20 cm, sau khi hoàn thiện (bằng cách trát thêm vữa tổng hợp vào xung quanh) mỗi cột là một khối trụ có đường kính đáy bằng 42 cm. Chiều cao của mỗi cột trước và sau khi hoàn thiện là 4 m. Biết lượng xi măng cần dùng chiếm 80% lượng vữa và cứ một bao xi măng 50 kg thì tương đương với 3 64000cm xi măng. Hỏi cần ít nhất bao nhiêu bao xi măng loại 50 kg để hoàn thiện toàn bộ hệ thống cột đã cho? [ads] + Bạn An có một đồng xu mà khi tung có xác suất xuất hiện mặt ngửa là 1/3 và bạn Bình có một đồng xu mà khi tung có xác suất xuất hiện mặt ngửa là 2/5. Hai bạn An và Bình lần lượt chơi trò chơi tung đồng xu của mình đến khi có người được mặt ngửa, ai được mặt ngửa trước thì thắng. Các lần tung là độc lập với nhau và bạn An chơi trước. Xác suất bạn An thắng là p/q, trong đó p và q là các số nguyên dương nguyên tố cùng nhau. Tìm q − 2p. + Cho hàm số y = x^4 – 2020x^2 – m^2 – 1 với m là tham số thực. Kết luận nào sau đây là sai? A. Đồ thị hàm số cắt trục hoành tại 2 điểm phân biệt. B. Hàm số có 3 cực trị. C. Đồ thị hàm số nhận trục tung làm trục đối xứng. D. Đồ thị hàm số không có tiệm cận.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi lớp 12 môn Toán năm học 2018 2019 sở GD ĐT Nam Định
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán năm học 2018 2019 sở GD ĐT Nam Định Bản PDF Đề thi học sinh giỏi Toán lớp 12 năm học 2018 – 2019 sở GD&ĐT Nam Định gồm 2 bài thi độc lập: Toán trắc nghiệm và Toán tự luận, bài thi Toán trắc nghiệm gồm 40 câu, thời gian làm bài 60 phút, bài thi Toán tự luận gồm 5 câu, thời gian làm bài 75 phút. Kỳ thi nhằm tuyển chọn những em học sinh khối 12 giỏi môn Toán để tuyên dương, khen thưởng, làm tấm gương cho các học sinh khác noi theo, đồng thời thành lập đội tuyển học sinh giỏi Toán lớp 12 tỉnh Nam Định tham dự kỳ thi HSG Toán lớp 12 cấp Quốc gia. Trích dẫn đề thi học sinh giỏi Toán lớp 12 năm học 2018 – 2019 sở GD&ĐT Nam Định : + Cho hai mặt phẳng (P), (Q) song song với nhau cắt khối cầu tâm O, bán kính R tạo thành hai hình tròn cùng bán kính. Xét hình nón có đỉnh trùng với tâm của một trong hai hình tròn, đáy trùng với hình tròn còn lại. Tính khoảng cách giữa (P), (Q) để diện tích xung quanh của hình nón là lớn nhất. [ads] + Cho tập X = {1;2;3;…;8}. Gọi A là tập các số tự nhiên có 8 chữ số đôi một khác nhau được lập từ X. Lấy ngẫu nhiên một số từ tập A. Tính xác suất để số được lấy chia hết cho 2222. + Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD), đáy ABCD là hình thang vuông tại A và B, AD = 3BC = 3a, AB = a, SA = a√3. Gọi M là trung điểm SD và I thỏa mãn AD = 3AI. a) Tính thể tích của khối tứ diện CDIM. Tính góc giữa hai đường thẳng AM và SC. b) Gọi E, F lần lượt là hình chiếu của A trên các cạnh SB, SC và H là giao điểm của SI và AM. Tính thể tích của khối nón có đáy là đường tròn ngoại tiếp tam giác EFH và đỉnh thuộc mặt phẳng (ABCD).
Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2018 2019 sở GD ĐT Bắc Giang
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2018 2019 sở GD ĐT Bắc Giang Bản PDF Thứ Bảy ngày 16 tháng 03 năm 2019, sở Giáo dục và Đào tạo Bắc Giang tổ chức kỳ thi chọn học sinh giỏi văn hóa cấp tỉnh môn Toán lớp 12 năm học 2018 – 2019, đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2018 – 2019 sở GD&ĐT Bắc Giang được biên soạn theo hình thức kết hợp giữa trắc nghiệm khách quan và tự luận, trong đó phần trắc nghiệm gồm 40 câu, chiếm 14 điểm, phần tự luận gồm 03 câu, chiếm 06 điểm, thời gian làm bài 120 phút. Trích dẫn đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2018 – 2019 sở GD&ĐT Bắc Giang : + Cho hai đường thẳng Ax, By chéo nhau và vuông góc với nhau, có AB là đoạn vuông góc chung của hai đường thẳng đó và AB = a. Hai điểm M và N lần lượt di động trên Ax và By sao cho MN = b. Xác định độ dài đoạn thẳng AM theo a và b sao cho thể tích tứ diện ABMN đạt giá trị lớn nhất. [ads] + Trong không gian Oxyz, cho các điểm A(1;0;0), B(-2;0;3), M(0;0;1) và N(0;3;1). Mặt phẳng (P) đi qua các điểm M, N sao cho khoảng cách từ điển B đến (P) gấp hai lần khoảng cách từ điểm A đến (P). Có bao nhiêu mặt phẳng (P) như vậy? A. Có vô số mặt phẳng (P). B. Có hai mặt phẳng (P). C. Chỉ có một mặt phẳng (P). D. Không có mặt phẳng (P) nào. + Cho tập hợp S = {1;2;3;4;5;6;7;8;9;10}. Hỏi có bao nhiêu cách chia tập S thành ba tập con khác rỗng sao cho trong mỗi tập con đó không có hai số nguyên liên tiếp nào?
Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2018 2019 sở GD ĐT Đồng Tháp
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2018 2019 sở GD ĐT Đồng Tháp Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm học 2018 – 2019 sở GD&ĐT Đồng Tháp; đề thi có đáp án và lời giải chi tiết, kỳ thi được diễn ra vào ngày 03 tháng 03 năm 2019.
Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2018 2019 sở GD ĐT Bắc Ninh
Nội dung Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2018 2019 sở GD ĐT Bắc Ninh Bản PDF Thứ Sáu ngày 15 tháng 03 năm 2019, sở Giáo dục và Đào tạo tỉnh Bắc Ninh tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2018 – 2019, đây là kỳ thi nhằm phát hiện và tuyển chọn những em học sinh lớp 12 giỏi môn Toán đang học tập tại các trường THPT trên địa bàn tỉnh Bắc Ninh, các em được chọn sẽ là những tấm gương tiêu biểu trong học tập cho học sinh toàn tỉnh. Đề thi học sinh giỏi tỉnh Toán lớp 12 năm 2018 – 2019 sở GD&ĐT Bắc Ninh có mã đề 485 được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, học sinh làm bài trong 90 phút. [ads] Trích dẫn đề thi học sinh giỏi tỉnh Toán lớp 12 năm 2018 – 2019 sở GD&ĐT Bắc Ninh : + . Mệnh đề nào dưới đây SAI? A. Hai khối lăng trụ có diện tích đáy và chiều cao tương ứng bằng nhau thì có thể tích bằng nhau. B. Hai khối chóp có diện tích đáy và chiều cao tương ứng bằng nhau thì có thể tích bằng nhau. C. Hai khối lập phương có diện tích toàn phần bằng nhau thì có thể tích bằng nhau. D. Hai khối hộp chữ nhật có diện tích toàn phần bằng nhau thì có thể tích bằng nhau. + Trong không gian với hệ tọa độ Oxyz, cho ba điểm M(6;0;0), (0;6;0), P(0;0;6). Hai mặt câu có phương trình (S1): x^2 + y^2 + z^2 – 2x – 2y + 1 = 0 và (S2): x^2 + y^2 + z^2 – 8x + 2y + 2z + 1 = 0 cắt nhau theo đường tròn (C). Hỏi có bao nhiêu mặt cầu có tâm thuộc mặt phẳng chứa (C) và tiếp xúc với ba đường thẳng MN, NP, PM? + Cho hàm số y = (m – 3)x – 2m + 1 có đồ thị là đường thẳng d. Gọi S là tập các giá trị của tham số m để đường thẳng d cắt trục Ox, Oy lần lượt tại hai điểm A, B sao cho tam giác OAB cân. Số tập con của tập S là?