Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG Toán 12 năm 2019 - 2020 cụm các trường THPT tỉnh Bắc Ninh

Nằm trong kế hoạch ôn tập, bồi dưỡng đội tuyển học sinh giỏi môn Toán 12 để chuẩn bị cho kỳ thi HSG Toán 12 năm học 2019 – 2020, vừa qua, một số trường THPT thuộc sở Giáo dục và Đào tạo tỉnh Bắc Ninh đã tổ chức kỳ thi giao lưu học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2019 – 2020. Đề giao lưu HSG Toán 12 năm học 2019 – 2020 cụm các trường THPT tỉnh Bắc Ninh mã đề 132, đề được biên soạn theo dạng trắc nghiệm với 50 câu, thời gian làm bài 90 phút; đề thi này cũng rất hữu ích dành các em học sinh khối 12 trong quá trình ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán. Trích dẫn đề giao lưu HSG Toán 12 năm 2019 – 2020 cụm các trường THPT tỉnh Bắc Ninh : + Một đội xây dựng cần hoàn thiện một hệ thống cột trụ tròn của một cửa hàng kinh doanh gồm 10 chiếc. Trước khi hoàn thiện mỗi chiếc cột là một khối bê tông cốt thép hình lăng trụ lục giác đều có cạnh 20 cm, sau khi hoàn thiện (bằng cách trát thêm vữa tổng hợp vào xung quanh) mỗi cột là một khối trụ có đường kính đáy bằng 42 cm. Chiều cao của mỗi cột trước và sau khi hoàn thiện là 4 m. Biết lượng xi măng cần dùng chiếm 80% lượng vữa và cứ một bao xi măng 50 kg thì tương đương với 3 64000cm xi măng. Hỏi cần ít nhất bao nhiêu bao xi măng loại 50 kg để hoàn thiện toàn bộ hệ thống cột đã cho? [ads] + Bạn An có một đồng xu mà khi tung có xác suất xuất hiện mặt ngửa là 1/3 và bạn Bình có một đồng xu mà khi tung có xác suất xuất hiện mặt ngửa là 2/5. Hai bạn An và Bình lần lượt chơi trò chơi tung đồng xu của mình đến khi có người được mặt ngửa, ai được mặt ngửa trước thì thắng. Các lần tung là độc lập với nhau và bạn An chơi trước. Xác suất bạn An thắng là p/q, trong đó p và q là các số nguyên dương nguyên tố cùng nhau. Tìm q − 2p. + Cho hàm số y = x^4 – 2020x^2 – m^2 – 1 với m là tham số thực. Kết luận nào sau đây là sai? A. Đồ thị hàm số cắt trục hoành tại 2 điểm phân biệt. B. Hàm số có 3 cực trị. C. Đồ thị hàm số nhận trục tung làm trục đối xứng. D. Đồ thị hàm số không có tiệm cận.

Nguồn: toanmath.com

Đọc Sách

Đề chọn học sinh giỏi Toán năm 2020 2021 trường THPT chuyên Bến Tre
Nội dung Đề chọn học sinh giỏi Toán năm 2020 2021 trường THPT chuyên Bến Tre Bản PDF Đề chọn học sinh giỏi Toán năm 2020 – 2021 trường THPT chuyên Bến Tre gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút. Trích dẫn đề chọn học sinh thi HSG Toán cấp tỉnh năm 2020 – 2021 trường THPT chuyên Bến Tre : + Vé xe buýt có dạng abcdef với a, b, c, d, e, f thuộc {0; 1; 2; …; 9}. Một vé như trên thỏa mãn điều kiện a + b + c = d + e + f được gọi là vé hạnh phúc. Tính số vé hạnh phúc. + Cho hai đường tròn (O1) và (O2) cắt nhau tại A và B. Các tiếp tuyến của (O1) tại A, B cắt nhau tại O. Gọi I là điểm trên đường tròn (O1) nhưng ngoài đường tròn (O2). Các đường thẳng IA, IB cắt đường tròn (O2) lần lượt tại C, D. Gọi M là trung điểm của đoạn thẳng CD. Chứng minh rằng: a) Các tam giác IAB và IDC đồng dạng với nhau. b) I, M, O thẳng hàng. + Cho hàm f: R → R thỏa mãn điều kiện: f(f(x) + 2f(y)) = f(x) + y + f(y) với mọi x, y thuộc R (1). a) Chứng minh f là đơn ánh. b) Tìm tất cả các hàm số thỏa mãn (1).
Đề chọn đội tuyển Toán năm 2020 2021 trường THPT chuyên Trần Phú Hải Phòng
Nội dung Đề chọn đội tuyển Toán năm 2020 2021 trường THPT chuyên Trần Phú Hải Phòng Bản PDF Thứ Bảy ngày 12 tháng 09 năm 2020, trường THPT chuyên Trần Phú, thành phố Hải Phòng tổ chức kỳ thi chọn đội tuyển học sinh giỏi cấp trường môn Toán năm học 2020 – 2021. Đề chọn đội tuyển Toán năm 2020 – 2021 trường THPT chuyên Trần Phú – Hải Phòng gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề chọn đội tuyển Toán năm 2020 – 2021 trường THPT chuyên Trần Phú – Hải Phòng : + Cho tam giác ABC nội tiếp đường tròn (O), D là điểm chính giữa cung BC không chứa A, E là điểm đối xứng với B qua AD, BE cắt (O) tại F khác B. Điểm P di chuyển trên cạnh AC. BP cắt (O) tại Q khác B. Đường thẳng qua C song song với AQ cắt FD tại điểm G. a) Gọi H là giao điểm của EG và BC. Chứng minh rằng B, P, E, H cùng thuộc một đường tròn, gọi đường tròn này là (K). b) (K) cắt (O) tại L khác B. Chứng minh rằng LP luôn đi qua một điểm S cố định khi P di chuyển. c) Gọi T là trung điểm PE. Chứng minh rằng đường thẳng qua T song song với LS đi qua trung điểm của AF. + Xác định tất cả các đa thức hệ số nguyên nhận 1 + √2021 làm nghiệm. + Có bao nhiêu số nguyên dương n không vượt quá 10^2020 thỏa mãn 2^n ≡ 2021 (mod 5^2020)?
Đề chọn học sinh giỏi lớp 12 môn Toán năm 2020 2021 trường THPT Chu Văn An Hà Nội
Nội dung Đề chọn học sinh giỏi lớp 12 môn Toán năm 2020 2021 trường THPT Chu Văn An Hà Nội Bản PDF Thứ Bảy ngày 12 tháng 09 năm 2020, trường THPT Chu Văn An, thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi Toán dự thi thành phố lớp 12 THPT năm học 2020 – 2021. Đề chọn học sinh giỏi Toán lớp 12 năm 2020 – 2021 trường THPT Chu Văn An – Hà Nội gồm có 01 trang với 05 bài toán dạng tự luận: Hàm số, Phương trình và hệ phương trình, Giới hạn của dãy số, Tọa độ mặt phẳng Oxy, Hình học không gian, GTLN – GTNN của biểu thức nhiều biến số. Trích dẫn đề chọn học sinh giỏi Toán lớp 12 năm 2020 – 2021 trường THPT Chu Văn An – Hà Nội : + Trong mặt phẳng Oxy, cho tam giác ABC có M(2;1) là trung điểm cạnh AC, điểm H(0;-3) là chân đường cao kẻ từ A, điểm E(23;-2) thuộc đường thẳng chứa đường trung tuyến kẻ từ C. Tìm tọa độ điểm B biết rằng điểm A thuộc đường thẳng d: 2x + 3y – 5 = 0 và điểm C có hoành độ dương. + Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. Gọi a là số đo của góc BAC và b là số đo của góc giữa đường thẳng OA và mặt phẳng (ABC). Gọi R và S lần lượt là bán kính đường tròn ngoại tiếp và diện tích tam giác ABC. Chứng minh rằng: (cos a)^2/sin 2b = R^2/S. + Xét a, b, c là các số thực dương, thoả mãn các điều kiện abc = 1 và a^2 + b^2 + 1/a^2b^2 = 1 + 2/ab. Tìm giá trị nhỏ nhất của biểu thức P = 1/(1 + 3c) – 1/(a^2 + 1) – 1/(1 + b^2).
Đề chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2019 2020 sở GD ĐT Cao Bằng
Nội dung Đề chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2019 2020 sở GD ĐT Cao Bằng Bản PDF Ngày … tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Cao Bằng tổ chức kỳ thi tuyển chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 hệ THPT năm học 2019 – 2020. Đề chọn học sinh giỏi tỉnh Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Cao Bằng gồm 02 trang với 06 bài toán dạng tự luận: Hàm số và đồ thị, Giải và biện luận phương trình, Quy tắc đếm, Thể tích và khoảng cách, Tọa độ mặt phẳng Oxy, GTLN – GTNN. Trích dẫn đề chọn học sinh giỏi tỉnh Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Cao Bằng : + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC nhọn, có H(3;-4/3), I(6;-7/3) lần lượt là trực tâm, tâm đường tròn ngoại tiếp tam giác ABC. Gọi E, F lần lượt là hình chiếu vuông góc của B, C trên các cạnh AC, AB. Đường trung trực của đoạn EF có phương trình x – 3y – 10 = 0. Tìm tọa độ các đỉnh của tam giác ABC, biết B có tung độ dương và phương trình đường thẳng BE: x – 3 = 0. [ads] + Cho đa giác đều (H) có 20 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập các tam giác có các đỉnh là đỉnh của (H). Tính xác suất để chọn được một tam giác từ tập X là tam giác vuông nhưng không vuông cân. + Tìm các giá trị của tham số m để đồ thị (Cm): y = x^4 – 2(m + 2)x^2 + 2m + 3 cắt trục hoành tại bốn điểm phân biệt có hoành độ tương ứng lập thành một cấp số cộng.