Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo giữa học kì 1 (HK1) lớp 8 môn Toán năm 2023 2024 trường THCS Lê Quý Đôn TP HCM

Nội dung Đề tham khảo giữa học kì 1 (HK1) lớp 8 môn Toán năm 2023 2024 trường THCS Lê Quý Đôn TP HCM Bản PDF - Nội dung bài viết Đề tham khảo giữa học kỳ 1 Toán lớp 8 năm học 2023 - 2024 trường THCS Lê Quý Đôn - TP HCM Đề tham khảo giữa học kỳ 1 Toán lớp 8 năm học 2023 - 2024 trường THCS Lê Quý Đôn - TP HCM Sytu xin gửi đến quý thầy cô giáo và các em học sinh lớp 8 đề tham khảo kiểm tra đánh giá giữa học kỳ 1 môn Toán trường THCS Lê Quý Đôn, quận 3, thành phố Hồ Chí Minh. Đề thi bao gồm câu hỏi, đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn từ Đề tham khảo: Câu 1: Trong các phát biểu sau, phát biểu nào là định lý Pythagore? A. Nếu một tam giác có bình phương cạnh huyền bằng hiệu bình phương của hai cạnh góc vuông thì tam giác đó là tam giác vuông. B. Nếu một tam giác có một cạnh bằng tổng của hai cạnh còn lại thì tam giác đó là tam giác vuông. C. Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương của hai cạnh góc vuông. D. Trong một tam giác vuông, bình phương một cạnh bằng tổng bình phương của hai cạnh còn lại. Câu 2: Hình bên là một cái lều ở một trại hè của học sinh có dạng hình chóp tứ giác đều. Hỏi: a) Thể tích không khí bên trong lều là bao nhiêu? b) Số vải bạt cần thiết để dựng lều (không tính đến đường viền, nếp gấp, đáy…) là bao nhiêu? Câu 3: Để chạy xe từ sân lên nhà, người ta làm một bậc tam cấp như hình vẽ. Chiều dài của bậc thêm là 30cm, chiều dài từ chân bậc thềm tới điểm đặt còn lại của bậc tam cấp là 70cm. Tính chiều dài của bậc tam cấp. File word đầy đủ có thể tải tại đây. Hãy chuẩn bị kỹ càng, học tập và làm bài tập thật tốt để có kết quả tốt nhất trong kỳ thi sắp tới. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Đề giữa học kì 1 Toán 8 năm 2022 - 2023 trường Lê Thánh Tông - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra đánh giá giữa học kì 1 môn Toán 8 năm học 2022 – 2023 trường TH – THCS – THPT Lê Thánh Tông, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 15 tháng 10 năm 2022. Trích dẫn Đề giữa học kì 1 Toán 8 năm 2022 – 2023 trường Lê Thánh Tông – TP HCM : + Tính giá trị của biểu thức. + Một cửa hàng thời trang có chương trình giảm giá 20% cho tất cả các sản phẩm. Đặc biệt nếu khách hàng nào có thẻ khách hàng thân thiết của cửa hàng thì được giảm giá thêm 10% trên giá đã giảm. a) Chị Nga là khách hàng thân thiết của cửa hàng, chị đã đến cửa hàng mua một chiếc váy có giá niêm yết 800 ngàn đồng. Hỏi chị Nga phải trả bao nhiêu tiền cho chiếc váy đó? b) Ông Đồ cũng là một khách hàng thân thiết của cửa hàng, ông đã mua một chiếc va li và đã phải trả số tiền là 864 ngàn đồng. Hỏi giá ban đầu của chiếc va li đó là bao nhiêu? + Cho tam giác ABC vuông cân tại A. Lấy điểm M bất kỳ thuộc cạnh BC (M khác B và C). Gọi E và F lần lượt là hình chiếu của M trên AB và AC. a) Chứng minh AM = EF. b) Gọi I, K lần lượt là trung điểm của MB, MC. Chứng minh tứ giác EIKF là hình thang vuông. c) Một con rô bốt thu gom rác xuất phát từ vị trí A di chuyển dọc theo các cạnh của tứ giác AEMF một lượt rồi trở về A. Chứng minh rằng độ dài quãng đường con rô bốt di chuyển không phụ thuộc vào vị trí của điểm M trên cạnh BC. Tính quãng đường đó biết độ dài cạnh BC = 20 mét.
Đề giữa học kì 1 Toán 8 năm 2022 - 2023 trường THCS Phúc Xá - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng giữa học kì 1 môn Toán 8 năm học 2022 – 2023 trường THCS Phúc Xá, quận Ba Đình, thành phố Hà Nội; đề thi được biên soạn theo cấu trúc đề tự luận 100%, thời gian làm bài 90 phút (không kể thời gian phát đề); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giữa học kì 1 Toán 8 năm 2022 – 2023 trường THCS Phúc Xá – Hà Nội : + Cho tam giác ABC có BC = 4cm, các đường trung tuyến BD và CE cắt nhau tại G. Gọi I, K theo thứ tự là trung điểm của GB, GC. 1/ Tính độ dài ED 2/ Chứng minh DE // IK 3/ Chứng minh tứ giác EDKI là hình bình hành. + Để đo khoảng cách giữa hai điểm B và C bị ngăn bởi một cái hồ nước, người ta đóng các cọc ở vị trí A, B, C, M, N như hình vẽ. Người ta đo được MN = 550m. Tính khoảng cách BC? + Phân tích các da thức sau thành nhân tử.
Đề giữa học kỳ 1 Toán 8 năm 2022 - 2023 trường THCS Ngô Sĩ Liên - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra chất lượng giữa học kỳ 1 môn Toán 8 năm học 2022 – 2023 trường THCS Ngô Sĩ Liên, quận Hoàn Kiếm, thành phố Hà Nội. Trích dẫn Đề giữa học kỳ 1 Toán 8 năm 2022 – 2023 trường THCS Ngô Sĩ Liên – Hà Nội : + Cho hình vẽ bên. a) Chứng minh tứ giác ABEF là hình thang vuông. b) Biết AB = 16 cm, CD = 12 cm. Tính EF. + Cho tam giác ABC cân tại A, lấy H là trung điểm của cạnh BC, D là trung điểm của cạnh AC. a) Chứng minh DH // AB. b) Trên tia đối của tia HD lấy điểm E sao cho HD = HE. Chứng minh tứ giác BDCE là hình bình hành và AD = EB. c) Thêm điều kiện gì của tam giác ABC để tứ giác ABHD là hình thang cân? d) Gọi G là giao điểm của AH và BD, I là điểm đối xứng với G qua BC. Chứng minh ba điểm E, I, C thẳng hàng và EC = 3EI. + Cho x + 2y = 3. Tìm giá trị nhỏ nhất của biểu thức S = x2 + y2.
Đề giữa học kì 1 Toán 8 năm 2022 - 2023 trường Lương Thế Vinh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra chất lượng giữa học kì 1 môn Toán 8 năm học 2022 – 2023 trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội; đề thi được xây dựng theo cấu trúc 20% trắc nghiệm + 80% tự luận (theo điểm số), thời gian làm bài 80 phút (không kể thời gian phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giữa học kì 1 Toán 8 năm 2022 – 2023 trường Lương Thế Vinh – Hà Nội : + Một dấu hiệu nhận biết hình chữ nhật là: A. Tứ giác có hai đường chéo bằng nhau là hình chữ nhật. B. Hình thang có hai góc vuông là hình chữ nhật. C. Hình bình hành có một góc vuông là hình chữ nhật. D. Hình bình hành có 2 đường chéo vuông góc là hình chữ nhật. + Cho hai đa thức: 3 2 Px x x x 5 8 và Q x x 3 a) Tìm thương và dư trong phép chia P x cho Q x. b) Tìm các giá trị nguyên của x để giá trị của P x chia hết cho giá trị của Q x. + Cho tam giác ABC vuông tại A, lấy điểm D thuộc cạnh huyền BC (D không trùng B và C). Gọi M, N lần lượt đối xứng với D qua AB, AC. Gọi I là giao điểm của MD với AB, K là giao điểm của ND với AC. a) Chứng minh tứ giác AIDK là hình chữ nhật. b) Chứng minh M đối xứng với N qua A. c) Tìm vị trí của D trên cạnh BC sao cho CM đi qua trung điểm của IK.