Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 1 Toán 11 năm 2022 - 2023 trường THPT Nguyễn Dục - Quảng Nam

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kì 1 môn Toán 11 năm học 2022 – 2023 trường THPT Nguyễn Dục, tỉnh Quảng Nam; đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn Đề cuối học kì 1 Toán 11 năm 2022 – 2023 trường THPT Nguyễn Dục – Quảng Nam : + Một công ty cần tuyển nhân sự , có 28 người đến nộp hồ sơ. Trong đó có 14 người biết tiếng Anh, 16 người biết tiếng Pháp, 14 người biết tiếng Nhật, 8 người biết tiếng Anh và Pháp, 6 người biết tiếng Pháp và tiếng Nhật, 5 người biết tiếng Nhật và tiếng Anh. Biết rằng mỗi người biết ít nhất một thứ tiếng. Cách tính điểm xét tuyển của công ty như sau: chỉ biết một thứ tiếng cộng 2 điểm, chỉ biết tiếng Anh và tiếng Pháp cộng 6 điểm, chỉ biết tiếng Pháp và tiếng Nhật cộng 8 điểm, chỉ biết tiếng Nhật và tiếng Anh cộng 10 điểm, nếu biết cả ba thứ tiếng cộng 30 điểm. Do nhu cầu công việc nên công ty cần tuyển 3 người. Tính xác xuất để chọn được 3 người có tổng số điểm của 3 người đó từ 70 điểm trở lên. + Cho hình chóp S.MNPQ có đáy MNPQ là hình thang, đáy lớn MN.O là giao điểm của MP và NQ. Gọi H là trung điểm của SP và K là giao điểm của đường thẳng AH với mặt phẳng (SNQ). Trong các khẳng định sau, khẳng định nào đúng? A. K là giao điểm của AH và SQ. B. K là giao điểm của AH và SN. C. K là giao điểm của AH và NQ. D. K là giao điểm của AH và SO. + Cho biết mệnh đề nào sau đây là sai? A. Qua hai đường thẳng cắt nhau xác định duy nhất một mặt phẳng. B. Qua ba điểm không thẳng hàng xác định duy nhất một mặt phẳng. C. Qua một đường thẳng và một điểm không thuộc nó xác định duy nhất một mặt phẳng. D. Qua hai đường thẳng bất kỳ xác định duy nhất một mặt phẳng.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 (HK1) lớp 11 môn Toán chuyên năm 2020 2021 trường chuyên Lê Hồng Phong Nam Định
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán chuyên năm 2020 2021 trường chuyên Lê Hồng Phong Nam Định Bản PDF Đề thi HK1 Toán lớp 11 chuyên năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Trích dẫn đề thi HK1 Toán lớp 11 chuyên năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định : + Cho tam giác ABC nhọn, nội tiếp đường tròn (O), có đường cao AD (D thuộc BC). Kẻ DE, DF lần lượt vuông góc với AB, AC (E thuộc AB, F thuộc AC). Gọi I là giao điểm của BF và CE. a) Gọi K là giao điểm của BF và DE, L là giao điểm của CE và DF. Chứng minh rằng KL song song với BC. b) Gọi M, N lần lượt là trung điểm của AD và AI. Chứng minh rằng M, N, O thẳng hàng. + Cho số nguyên dương n. Có bao nhiêu số tự nhiên chia hết cho 3, có n chữ số và các chữ số đều thuộc {1;2;3;6}. + Tìm tất cả các hàm số f: R → R thỏa mãn: f(x)f(y) – f(x + y) = 4/9.xy với mọi x, y thuộc R.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường THPT chuyên Hà Nội Amsterdam
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường THPT chuyên Hà Nội Amsterdam Bản PDF Đề thi học kì 1 Toán lớp 11 năm 2020 – 2021 trường THPT chuyên Hà Nội – Amsterdam được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 20 câu, chiếm 60% số điểm, phần tự luận gồm 03 câu, chiếm 40% số điểm, thời gian làm bài 90 phút. Trích dẫn đề thi học kì 1 Toán lớp 11 năm 2020 – 2021 trường THPT chuyên Hà Nội – Amsterdam : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi điểm I và điểm M lần lượt là trung điểm của các đoạn thẳng SA và OC. 1 Xác định giao tuyến của hai mặt phẳng (SAC) và (SBD). 2 Gọi (α) là mặt phẳng chứa đường thẳng IM và song song với đường thẳng BD. Xác định thiết diện của mặt phẳng (α) với hình chóp S.ABCD. 3 Giả sử mặt phẳng (α) cắt đường thẳng SO tại điểm K. Tính tỉ số SK/KO. + Từ 30 câu hỏi trắc nghiệm gồm 15 câu dễ, 9 câu trung bình và 6 câu khó người ta chọn ra 10 câu để làm đề kiểm tra sao cho phải có đủ cả 3 loại dễ, trung bình và khó. Hỏi có thể lập được bao nhiêu đề kiểm tra. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, Q lần lượt là trung điểm của các cạnh AB, AD, SC. Thiết diện của hình chóp với mặt phẳng (MNQ) là đa giác có bao nhiêu cạnh?
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường THPT Nguyễn Thị Minh Khai TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường THPT Nguyễn Thị Minh Khai TP HCM Bản PDF Đề thi HK1 Toán lớp 11 năm 2020 – 2021 trường THPT Nguyễn Thị Minh Khai, thành phố Hồ Chí Minh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có đáp số và lời giải chi tiết. Trích dẫn đề thi HK1 Toán lớp 11 năm 2020 – 2021 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Cho tập hợp A = {1; 2; 3; 4; 5; 6}. Gọi B là tập hợp tất cả các số tự nhiên gồm 4 chữ số đôi một khác nhau được lấy từ A. a) Tính số phần tử của B. b) Chọn ngẫu nhiên 2 số thuộc B. Tính xác suất để trong hai số được chọn có đúng 1 số có mặt chữ số 3. + Dùng phương pháp qui nạp toán học, chứng minh rằng với mọi số nguyên dương n ta luôn có 13^n – 1 chia hết cho 12. + Tìm hệ số của x^20 trong khai triển Newton của (2x^5 – 4)^n biết n là số tự nhiên thỏa 2.2An + 50 = 2A2n.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường chuyên Lê Hồng Phong TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường chuyên Lê Hồng Phong TP HCM Bản PDF Thứ Tư ngày 16 tháng 12 năm 2020, trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng cuối học kỳ 1 môn Toán lớp 11 năm học 2020 – 2021. Đề thi học kỳ 1 Toán lớp 11 năm 2020 – 2021 trường chuyên Lê Hồng Phong – TP HCM gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán lớp 11 năm 2020 – 2021 trường chuyên Lê Hồng Phong – TP HCM : + Một số nguyên dương gọi là đối xứng nếu ta viết các chữ số theo thứ tự ngược lại thì được số bằng số ban đầu, ví dụ số 1221 là một số đối xứng. Chọn ngẫu nhiên một số đối xứng có 4 chữ số, tính xác suất chọn được số chia hết cho 7. + Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là các điểm trên cạnh CD, AD, SA thỏa MD = 2MC, NA = 3ND, PA = 3PS. Gọi G là trọng tâm tam giác SBC. a) Tìm giao điểm K của đường thẳng BM và mặt phẳng (SAC). b) Chứng minh mặt phẳng (NPK) song song mặt phẳng (SCD). c) Chứng minh đường thẳng MG song song mặt phẳng (SAD). + Gieo một con súc sắc cân đối và đồng chất hai lần. Tính xác suất để số chấm xuất hiện trong hai lần gieo khác nhau.