Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng bài tập Toán 11 quan hệ vuông góc trong không gian

Tài liệu gồm 62 trang, được biên soạn bởi thầy giáo Đặng Công Đức (Giang Sơn), phân dạng các bài tập môn Toán 11 chủ đề quan hệ vuông góc trong không gian, kết hợp ba bộ sách giáo khoa Toán 11: Cánh Diều (CD), Kết Nối Tri Thức Với Cuộc Sống (KNTTVCS), Chân Trời Sáng Tạo (CTST). + Vấn đề 1. Hai đường thẳng vuông góc (1a). + Vấn đề 2. Đường thẳng vuông góc với mặt phẳng (2a – 2b – 2c). + Vấn đề 3. Hai mặt phẳng vuông góc (3a – 3b – 3c). + Vấn đề 4. Góc giữa hai đường thẳng (4a – 4b – 4c). + Vấn đề 5. Góc giữa đường thẳng và mặt phẳng (5a – 5b – 5c). + Vấn đề 6. Góc nhị diện (6b – 6c). + Vấn đề 7. Khoảng cách từ điểm đến mặt phẳng (7a – 7b – 7c). + Vấn đề 8. Khoảng cách hai đường thẳng chéo nhau (8b – 8c). + Vấn đề 9. Thể tích khối chóp (9a – 9b – 9c). + Vấn đề 10. Thể tích khối lăng trụ (10b – 10c). + Vấn đề 11. Tỉ số thể tích (11b1 – 11b2 – 11c1 – 11c2). + Vấn đề 12. Cực trị thể tích (12c1 – 12c2). + Vấn đề 13. Ứng dụng thực tế của hình học không gian (13c1 – 13c2).

Nguồn: toanmath.com

Đọc Sách

Tài liệu chủ đề đường thẳng vuông góc với mặt phẳng
Tài liệu gồm 53 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề đường thẳng vuông góc với mặt phẳng, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 3. I. KIẾN THỨC TRỌNG TÂM 1) Đường thẳng vuông góc với mặt phẳng. 2) Góc giữa đường thẳng và mặt phẳng. II. PHÂN DẠNG BÀI TẬP VÀ HỆ THỐNG VÍ DỤ MINH HỌA Dạng 1 : Chứng minh đường thẳng vuông góc với mặt phẳng. Để chứng minh đường thẳng d vuông góc với mặt phẳng P ta chứng minh: + d vuông góc với hai đường thẳng cắt nhau nằm trong P. + d song song với đường thẳng a mà a vuông góc với P. Dạng 2 : Chứng minh hai đường thẳng vuông góc bằng cách chứng minh đường thẳng này vuông góc với mặt phẳng chứa đường thẳng kia. + Muốn chứng minh đường thẳng a vuông góc với đường thẳng b, ta đi tìm mặt phẳng chứa đường thẳng b sao cho việc chứng minh a dễ thực hiện. + Sử dụng định lý ba đường vuông góc. Dạng 3 : Xác định và tính góc giữa đường thẳng và mặt phẳng. + Loại 1: Góc giữa cạnh bên và mặt đáy. + Loại 2: Góc giữa cạnh bên và mặt phẳng chứa đường cao + Loại 3: Góc giữa đường cao và mặt bên. + Loại 4: Góc giữa cạnh bên và mặt bên (dạng toán nâng cao). Dạng 4 : Thiết diện vuông góc với một đường thẳng cho trước. Giả sử thiết diện là một phần của mặt phẳng P và P d. Khi đó ta tìm mặt trung gian dễ thấy và d // P và quy về thiết diện có yếu tố song song đã biết.
Tài liệu chủ đề hai đường thẳng vuông góc
Tài liệu gồm 25 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề hai đường thẳng vuông góc, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 3. I. KIẾN THỨC TRỌNG TÂM 1) Tích vô hướng của hai vectơ trong không gian. 2) Góc giữa hai đường thẳng trong không gian. 3) Hai đường thẳng vuông góc. II. HỆ THỐNG VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BẢI TẬP TỰ LUYỆN.
Bài toán khoảng cách trong không gian
Tài liệu gồm 63 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán khoảng cách trong không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 11 trong quá trình học tập chương trình Toán 11 phần Hình học chương 3. Vấn đề 1: KHOẢNG CÁCH TỪ ĐIỂM ĐẾN MẶT PHẲNG. + Dạng 1: Khoảng cách từ một điểm trên mặt phẳng đáy tới mặt phẳng chứa đường cao. + Dạng 2: Khoảng cách từ chân đường cao đến mặt phẳng bên. + Dạng 3: Khoảng cách từ một điểm bất kỳ đến mặt bên. + Dạng 4: Khoảng cách giữa đường thẳng và mặt phẳng song song. Khoảng cách giữa hai mặt phẳng song song. Vấn đề 2: KHOẢNG CÁCH GIỮA HAI ĐƯỜNG THẲNG CHÉO NHAU. + Dạng 1: Khoảng cách giữa hai đường thẳng chéo nhau và vuông góc với nhau. + Dạng 2: Tính khoảng cách giữa hai đường thẳng chéo nhau không vuông góc. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Bài toán về góc trong không gian
Tài liệu gồm 56 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán về góc trong không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 11 trong quá trình học tập chương trình Toán 11 phần Hình học chương 3. Vấn đề 1: GÓC GIỮA HAI ĐƯỜNG THẲNG. 1. Định nghĩa góc giữa hai đường thẳng. 2. Cách xác định góc giữa hai đường thẳng. 3. Phương pháp tính góc giữa hai đường thẳng. Vấn đề 2: GÓC GIỮA ĐƯỜNG THẲNG VÀ MẶT PHẲNG. + Dạng 1: Góc giữa cạnh bên và mặt đáy. + Dạng 2: Góc giữa cạnh bên và mặt phẳng chứa đường cao. + Dạng 3: Góc giữa đường cao và mặt bên. + Dạng 4: Góc giữa cạnh bên và mặt bên. Vấn đề 3: GÓC GIỮA HAI MẶT PHẲNG. + Dạng 1: Góc giữa mặt bên và mặt đáy. + Dạng 2: Góc giữa hai mặt bên. + Dạng 3: Sử dụng định lý hình chiếu để tính góc giữa hai mặt phẳng. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.