Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đối xứng tâm

Nội dung Chuyên đề đối xứng tâm Bản PDF - Nội dung bài viết Chuyên đề đối xứng tâmI. Tóm tắt lý thuyếtII. Bài tập và các dạng toánA. Các dạng bài cơ bản – nâng caoB. Dạng bài nâng cao phát triển tư duyC. Phiếu bài tự luyện Chuyên đề đối xứng tâm Chuyên đề đối xứng tâm là tài liệu gồm 16 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán về đối xứng tâm. Tài liệu này tuyển chọn các bài tập từ cơ bản đến nâng cao trong chuyên đề đối xứng tâm, cung cấp đáp án và lời giải chi tiết để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. Tóm tắt lý thuyết Hai điểm đối xứng qua một điểm: Hai điểm được gọi là đối xứng với nhau qua điểm o nếu o là trung điểm của đoạn thẳng nối hai điểm ấy. Hai hình đối xứng qua một điểm: Hai hình gọi là đối xứng với nhau qua điểm O nếu một điểm bất kì thuộc hình này đối xứng với một điểm thuộc hình kia qua điểm O và ngược lại. Hình có tâm đối xứng: Điểm O gọi là tâm đối xứng của hình H nếu điểm đối xứng với mỗi điểm thuộc hình qua điểm O cũng thuộc hình H. II. Bài tập và các dạng toán A. Các dạng bài cơ bản – nâng cao Dạng 1: Chứng minh hai điểm hoặc hai hình đối xứng với nhau qua một điểm. Phương pháp giải: Sử dụng định nghĩa hai điểm đối xứng hoặc hai hình đối xứng với nhau qua một điểm. Dạng 2: Sử dụng tính chất đối xứng trục để giải toán. Phương pháp giải: Sử dụng nhận xét hai đoạn thẳng (góc, tam giác) đối xứng vói nhau qua một đường thẳng thì bằng nhau. Dạng 3: Tổng hợp. B. Dạng bài nâng cao phát triển tư duy C. Phiếu bài tự luyện Với những thông tin trên, chuyên đề đối xứng tâm cung cấp một cách phân tích chi tiết, cụ thể và dễ hiểu về các khái niệm và bài tập liên quan đến đối xứng tâm trong hình học. Đây là tài liệu hữu ích giúp học sinh rèn luyện kỹ năng và phát triển tư duy trong quá trình học tập.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề phép chia các phân thức đại số
Tài liệu gồm 13 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phép chia các phân thức đại số, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Sử dụng quy tắc chia để thực hiện phép tính. Phương pháp giải: Áp dụng công thức: A/B : C/D = A/B . D/C với C/D ≠ 0. Chú ý: + Đối với phép chia có nhiều hơn hai phân thức, ta vẫn nhân với nghịch đảo của các phân thức đứng sau dấu chia theo thứ tự từ trái sang phải. + Ưu tiên tính toán đối vói biểu thức trong dấu ngoặc trước (nếu có). Dạng 2 . Tìm phân thức thỏa mãn đẳng thức cho trước. + Bước 1. Đưa phân thức cần tìm về riêng một vế. + Bước 2. Sử dụng quy tắc nhân và chia các phân thức đại số, từ đó suy ra phân thức cần tìm. Dạng 3 . Bài toán nâng cao.
Chuyên đề phép nhân các phân thức đại số
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phép nhân các phân thức đại số, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Sử dụng quy tắc nhân để thực hiện phép tính. Vận dụng quy tắc đã nêu trong phần tóm tắt lý thuyết để thực hiện yêu cầu của bài toán. Dạng 2 . Tính toán sử dụng kết hợp các quy tắc đã học. Sử dụng hợp lý ba quy tắc đã học: quy tắc cộng, quy tắc trừ và quy tắc nhân để tính toán. Chú ý: + Đối với phép nhân có nhiều hơn hai phân thức, ta vẫn nhân các tử thức với nhau và các mẫu thức với nhau. + Ưu tiên tính toán đối với biểu thức trong dấu ngoặc trước (nếu có).
Chuyên đề phép trừ các phân thức đại số
Tài liệu gồm 21 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phép trừ các phân thức đại số, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT 1. Phân thức đối. 2. Quy tắc trừ hai phân thức đại số. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Thực hiện phép tính có sử dụng quy tắc trừ các phân thức đại số. + Bước 1. Áp dụng quy tắc trừ các phân thức đại số đã nêu trong phần tóm tắt lý thuyết. + Bước 2. Thực hiện tương tự phép cộng các phân thức đại số đã học trong bài 5. Dạng 2 . Tìm phân thức thỏa mãn yêu cầu. + Bước 1. Đưa phân thức cần tìm về riêng một vế. + Bước 2. Sử dụng kết hợp quy tắc cộng, trừ các phân thức đại số, từ đó suy ra phân thức cần tìm. Dạng 3 . Giải toán đố có sử dụng phép trừ các phân thức đại số. + Bước 1. Thiết lập các biểu thức theo yêu cầu của đề bài. + Bước 2. Sử dụng kết hợp quy tắc cộng, trừ các phân thức đại số đã học. III. PHIẾU BÀI TẬP TỰ LUYỆN Dạng 1. Tìm phân thức đối của một phân thức. Dạng 2. Trừ các phân thức cùng mẫu thức. Dạng 3. Trừ các phân thức không cùng mẫu thức. Dạng 4. Chứng minh đẳng thức. Dạng 5. Biểu thị các đại lượng thông qua biến.
Chuyên đề phép cộng các phân thức đại số
Tài liệu gồm 14 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phép cộng các phân thức đại số, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT 1. Quy tắc cộng hai phân thức cùng mẫu thức: Muốn cộng hai phân thức có cùng mẫu thức, ta cộng các tử thức với nhau và giữ nguyên mẫu thức. 2. Quy tắc cộng hai phân thức có mẫu thức khác nhau: Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Cộng xác phân thức đại số thông thường. Sử dụng kết hợp hai quy tắc cộng phân thức đại số. Dạng 2 . Cộng các phân thức đại số có sử dụng quy tắc đối dấu. + Bước 1. Áp dụng quy tắc đổi dấu phân thức: A/B = -A/-B. + Bước 2. Thực hiện tương tự dạng 1. Dạng 3 . Tính giá trị biểu thức tổng các phân thức đại số. + Bước 1. Thực hiện phép cộng các phân thức đại số tương tự dạng 1 và dạng 2. + Bước 2.Thay giá trị của biến vào phân thức và tính. Dạng 4 . Giải toán đố có sử dụng phép cộng các phân thức đại số. + Bước 1. Thiết lập các biểu thức theo yêu cầu của đề bài. + Bước 2. Sử dụng kết hợp hai quy tắc cộng phân thức đại số đã nêu trong phần tóm tắt lý thuyết.