Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết và bài tập chuyên đề giới hạn - Lư Sĩ Pháp

giới thiệu đến các em học sinh lớp 11 tài liệu lý thuyết và bài tập chuyên đề giới hạn do thầy Lư Sĩ Pháp biên soạn, tài liệu gồm 78 trang tóm tắt lý thuyết chuyên đề giới hạn và tuyển chọn bài tập tự luận, trắc nghiệm giới hạn dãy số, giới hạn hàm số và hàm số liên tục có đáp án và lời giải chi tiết giúp học sinh học tốt chương trình Đại số và Giải tích 11 chương 4. Nội dung tài liệu được chia thành ba phần: Phần 1. Tóm tắt lý thuyết giới hạn dãy số, giới hạn hàm số, hàm số liên tục và các kiến thức liên quan cần nắm ở mỗi bài học. Phần 2. Bài tập tự luận giới hạn có hướng dẫn giải và bài tập tự luyện. Phần 3. Phần bài tập trắc nghiệm giới hạn đủ dạng và có đáp án. [ads] Khái quát nội dung tài liệu lý thuyết và bài tập giới hạn – Lư Sĩ Pháp: PHẦN I . LÝ THUYẾT VÀ BÀI TẬP TỰ LUẬN GIỚI HẠN DÃY SỐ, GIỚI HẠN HÀM SỐ VÀ HÀM SỐ LIÊN TỤC. §1. GIỚI HẠN CỦA DÃY SỐ. 1. Giới hạn hữu hạn của dãy số. 2. Giới hạn vô cực của dãy số. 3. Các giới hạn đặc biệt của dãy số. 4. Định lí về giới hạn hữu hạn của dãy số. 5. Một vài quy tắc tìm giới hạn vô cực của dãy số. 6. Tổng cấp số nhân lùi vô hạn. 7. Định lí kẹp về giới hạn của dãy số. 8. Một số lưu ý cần nắm khi tính giới hạn của dãy số. 9. Phương pháp tìm giới hạn của dãy số. 10. Phương pháp tính tổng của cấp số nhân lùi vô hạn. §2. GIỚI HẠN CỦA HÀM SỐ. 1. Giới hạn hữu hạn của hàm số. 2. Giới hạn vô cực của hàm số. 3. Định lí vể giới hạn hữu hạn của hàm số. 4. Các giới hạn đặc biệt của hàm số. 5. Quy tắc về giới hạn vô cực của hàm số. a) Quy tắc tìm giới hạn của tích hai hàm số ƒ(x).g(x). b) Quy tắc tìm giới hạn của thương hai hàm số ƒ(x)/g(x). 6. Khử các dạng vô định giới hạn của hàm số. §3. HÀM SỐ LIÊN TỤC. 1. Hàm số liên tục. 2. Các định lí về hàm số liên tục. PHẦN II . TRẮC NGHIỆM GIỚI HẠN DÃY SỐ, GIỚI HẠN HÀM SỐ VÀ HÀM SỐ LIÊN TỤC.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề giới hạn, hàm số liên tục Toán 11 KNTTvCS
Tài liệu gồm 377 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề giới hạn, hàm số liên tục trong chương trình SGK Toán 11 Kết Nối Tri Thức Với Cuộc Sống (viết tắt: Toán 11 KNTTvCS), có đáp án và lời giải chi tiết. BÀI 15 . GIỚI HẠN CỦA DÃY SỐ. + Dạng toán 1. Chứng minh dãy số có giới hạn 0. + Dạng toán 2. Tìm giới hạn bằng 0 của dãy số. + Dạng toán 3. Tính giới hạn của dãy số (un) có (un) = P(n)/Q(n), trong đó P(n), Q(n) là các đa thức của n. + Dạng toán 4. Tính giới hạn của dãy số (un) có (un) = P(n)/Q(n), trong đó P(n), Q(n) là các biểu thức chứa căn của n. + Dạng toán 5. Nhân với một lượng liên hợp. + Dạng toán 6. Tính giới hạn của dãy số (un) có (un) = P(n)/Q(n), trong đó P(n), Q(n) là các biểu thức chứa hàm mũ a^n, b^n, c^n. + Dạng toán 7. Dãy số (un) trong đó un là một tổng (hoặc một tích) của n số hạng (hoặc n thừa số). + Dạng toán 8. Dãy số (un) cho bằng công thức truy hồi. + Dạng toán 9. Giới hạn của dãy chứa đa thức hoặc căn theo n. + Dạng toán 10. Giới hạn của dãy chứa lũy thừa bậc n. BÀI 16 . GIỚI HẠN CỦA HÀM SỐ. + Dạng toán 1. Hàm số có giới hạn hữu hạn tại x0 không có dạng vô định. + Dạng toán 2. Dạng vô định 0/0. + Dạng toán 3. Dạng vô định ∞/∞. + Dạng toán 4. Dạng vô định ∞ − ∞. + Dạng toán 5. Dạng vô định 0.∞. + Dạng toán 6. Giới hạn một bên. + Dạng toán 7. Giới hạn vô cực. + Dạng toán 8. Liên quan đến hàm ẩn. BÀI 17 . HÀM SỐ LIÊN TỤC. + Dạng toán 1. Hàm số liên tục tại một điểm. + Dạng toán 2. Hàm số liên tục trên một khoảng. + Dạng toán 3. Chứng minh phương trình có nghiệm.
Chuyên đề giới hạn, hàm số liên tục Toán 11 Cánh Diều
Tài liệu gồm 380 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề giới hạn, hàm số liên tục trong chương trình SGK Toán 11 Cánh Diều (viết tắt: Toán 11 CD), có đáp án và lời giải chi tiết. BÀI 1 . GIỚI HẠN CỦA DÃY SỐ. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Chứng minh dãy số có giới hạn 0. + Dạng 2. Tìm giới hạn bằng 0 của dãy số. + Dạng 3. Tính giới hạn của dãy số (un) có (un) = P(n)/Q(n), trong đó P(n), Q(n) là các đa thức của n. + Dạng 4. Tính giới hạn của dãy số (un) có (un) = P(n)/Q(n), trong đó P(n), Q(n) là các biểu thức chứa căn của n. + Dạng 5. Nhân với một lượng liên hợp. + Dạng 6. Tính giới hạn của dãy số (un) có (un) = P(n)/Q(n), trong đó P(n), Q(n) là các biểu thức chứa hàm mũ a^n, b^n, c^n. + Dạng 7. Dãy số (un) trong đó un là một tổng (hoặc một tích) của n số hạng (hoặc n thừa số). + Dạng 8. Dãy số (un) cho bằng công thức truy hồi. + Dạng 9. Giới hạn của dãy chứa đa thức hoặc căn theo n. + Dạng 10. Giới hạn của dãy chứa lũy thừa bậc n. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Câu hỏi lý thuyết. + Dạng 2. Dãy số dạng phân thức. + Dạng 3. Dãy số chứa căn thức. + Dạng 4. Dãy số chứa lũy thừa. + Dạng 5. Tổng cấp số nhân lùi vô hạng. + Dạng 6. Một số bài toán khác. BÀI 2 . GIỚI HẠN CỦA HÀM SỐ. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Hàm số có giới hạn hữu hạn tại x0 không có dạng vô định. + Dạng 2. Dạng vô định 0/0. + Dạng 3. Dạng vô định ∞/∞. + Dạng 4. Dạng vô định ∞ − ∞. + Dạng 5. Dạng vô định 0.∞. + Dạng 6. Giới hạn một bên. + Dạng 7. Giới hạn vô cực. + Dạng 8. Liên quan đến hàm ẩn. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Giới hạn hữu hạn. + Dạng 2. Giới hạn một bên. + Dạng 3. Giới hạn tại vô cực. + Dạng 4. Giới hạn vô định. BÀI 3 . HÀM SỐ LIÊN TỤC. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Hàm số liên tục tại một điểm. + Dạng 2. Hàm số liên tục trên một khoảng. + Dạng 3. Chứng minh phương trình có nghiệm. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Câu hỏi lý thuyết. + Dạng 2. Liên tục tại một điểm. + Dạng 3. Liên tục trên khoảng. + Dạng 4. Chứng minh phương trình có nghiệm.
Bài giảng giới hạn, hàm số liên tục Toán 11 Kết Nối Tri Thức Với Cuộc Sống
Tài liệu gồm 130 trang, được biên soạn bởi thầy giáo Lê Quang Xe, bao gồm tóm tắt lý thuyết, các dạng toán thường gặp, bài tập rèn luyện và bài tập trắc nghiệm chuyên đề giới hạn, hàm số liên tục trong chương trình môn Toán 11 bộ sách Kết Nối Tri Thức Với Cuộc Sống. Chương 5 . GIỚI HẠN, HÀM SỐ LIÊN TỤC 2. Bài 1 . GIỚI HẠN CỦA DÃY SỐ 2. A TÓM TẮT LÍ THUYẾT 2. B CÁC DẠNG TOÁN THƯỜNG GẶP 5. + Dạng 1. Phương pháp đặt thừa số chung (lim hữu hạn) 5. + Dạng 2. Phương pháp lượng liên hợp (lim hữu hạn) 6. + Dạng 3. Giới hạn tại vô cực 8. + Dạng 4. Tính tổng của dãy cấp số nhân lùi vô hạn 9. + Dạng 5. Toán thực tế, liên môn liên quan đến giới hạn dãy số 11. C BÀI TẬP RÈN LUYỆN 15. D BÀI TẬP TRẮC NGHIỆM 22. Bài 2 . GIỚI HẠN CỦA HÀM SỐ 33. A TÓM TẮT LÍ THUYẾT 33. B MỘT SỐ DẠNG TOÁN THƯỜNG GẶP 38. + Dạng 1. Thay số trực tiếp 38. + Dạng 2. Phương pháp đặt thừa số chung – kết quả hữu hạn 39. + Dạng 3. Phương pháp đặt thừa số chung – kết quả vô cực 41. + Dạng 4. Phương pháp lượng liên hợp kết quả hữu hạn 42. + Dạng 5. Giới hạn một bên 44. + Dạng 6. Toán thực tế, liên môn về hàm số liên tục 45. C BÀI TẬP RÈN LUYỆN 47. D BÀI TẬP TRẮC NGHIỆM 59. Bài 3 . HÀM SỐ LIÊN TỤC 69. A TÓM TẮT LÝ THUYẾT 69. B CÁC DẠNG TOÁN THƯỜNG GẶP 71. + Dạng 1. Dựa vào đồ thị xét tính liên tục của hàm số tại một điểm, một khoảng 71. + Dạng 2. Hàm số liên tục tại một điểm 73. + Dạng 3. Hàm số liên tục trên khoảng, đoạn 75. C BÀI TẬP RÈN LUYỆN 77. D BÀI TẬP TRẮC NGHIỆM 82. Bài 4 . BÀI TẬP CUỐI CHƯƠNG V 95. A TRẮC NGHIỆM 95. B TỰ LUẬN 105. Bài 5 . BÀI TẬP CUỐI CHƯƠNG V – TRẮC NGHIỆM 114.
Chủ đề giới hạn của dãy số Toán 11 KNTTVCS - Lê Bá Bảo
Tài liệu gồm 50 trang, được biên soạn bởi thầy giáo Lê Bá Bảo, bao gồm tóm tắt lý thuyết, bài tập tự luận và bài tập trắc nghiệm chủ đề giới hạn của dãy số môn Toán 11 Kết Nối Tri Thức Với Cuộc Sống (KNTTVCS), có đáp án và lời giải chi tiết. CHƯƠNG IV . GIỚI HẠN. HÀM SỐ LIÊN TỤC. Chủ đề 1 : GIỚI HẠN DÃY SỐ. I. TÓM TẮT LÝ THUYẾT 1. Giới hạn hữu hạn của dãy số. 2. Định lí về giới hạn hữu hạn của dãy số. 3. Tổng của cấp số nhân lùi hạn. 4. Giới hạn vô cực của dãy số. II. BÀI TẬP TỰ LUẬN. III. BÀI TẬP TRẮC NGHIỆM. IV. LỜI GIẢI CHI TIẾT.