Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT Quốc gia 2019 trường THPT Kim Liên - Hà Nội lần 1

Đề thi thử Toán THPT Quốc gia 2019 trường THPT Kim Liên – Hà Nội lần 1 mã đề 601 được biên soạn nhằm giúp các em học sinh khối 12 của trường làm quen và thử sức với kỳ thi tương tự thi THPT Quốc gia môn Toán, để các em có sự chuẩn bị về mặt tâm lý lẫn kiến thức trước khi bước vào kỳ thi chính thức dự kiến được diễn ra vào tháng 06/2019, đề thi có 06 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, thời gian làm bài 90 phút, kỳ thi được diễn ra vào Chủ Nhật, ngày 13 tháng 01 năm 2019, nội dung chủ yếu thuộc chương trình môn Toán lớp 12 – đây là một cấu trúc đề khá giống với đề minh họa Toán 2019 mà Bộ Giáo dục và Đào tạo đã từng công bố, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi thử Toán THPT Quốc gia 2019 trường THPT Kim Liên – Hà Nội lần 1 : + Một đề kiểm tra trắc nghiệm 45 phút môn Tiếng Anh của lớp 10 là một đề gồm 25 câu hỏi độc lập, mỗi câu hỏi có 4 đáp án trả lời trong đó chỉ có một đáp án đúng. Mỗi câu trả lời đúng được 0,4 điểm, câu trả lời sai không được điểm. Bạn Bình vì học rất kém môn Tiếng Anh nên làm bài bằng cách chọn ngẫu nhiên câu trả lời cho tất cả 25 câu. Gọi A là biến cố “Bình làm đúng k câu”, biết xác suất của biến cố A đạt giá trị lớn nhất. Tính k. [ads] + Người ta xếp bảy viên bi là các khối cầu có cùng bán kính R vào một cái lọ hình trụ. Biết rằng các viên bi đều tiếp xúc với hai đáy, viên bi nằm chính giữa tiếp xúc với sáu viên bi xung quanh và mỗi viên bi xung quanh đều tiếp xúc với các đường sinh của lọ hình trụ. Tính theo R thể tích lượng nước cần dùng để đổ đầy vào lọ sau khi đã xếp bi. + Giá trị còn lại của một chiếc xe ôtô loại X thuộc hãng xe Toyota sau t năm kể từ khi mua đã được các nhà kinh tế nghiên cứu và ước lượng bằng công thức G(t) = 600.e^(-0.12t) (triệu đồng). Ông A mua một chiếc xe ôtô loại X thuộc hãng xe đó từ khi xe mới xuất xưởng và muốn bán sau một thời gian sử dụng với giá từ 300 triệu đến 400 triệu đồng. Hỏi ông A phải bán trong khoảng thời gian nào gần nhất với kết quả dưới đây kể từ khi mua? A. Từ 2,4 năm đến 3,2 năm. B. Từ 3,4 năm đến 5,8 năm. C. Từ 3 năm đến 4 năm. D. Từ 4,2 năm đến 6,6 năm.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán tốt nghiệp THPT 2021 trường Đặng Thúc Hứa - Nghệ An
Chủ Nhật ngày 28 tháng 03 năm 2021, trường THPT Đặng Thúc Hứa, huyện Thanh Chương, tỉnh Nghệ An tổ chức kỳ thi thử tốt nghiệp THPT môn Toán năm học 2020 – 2021. Đề thi thử Toán tốt nghiệp THPT 2021 trường Đặng Thúc Hứa – Nghệ An mã đề 147 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút.
Đề thi thử THPT Quốc gia 2021 môn Toán lần 2 trường THPT Kim Liên - Hà Nội
Đề thi thử THPT Quốc gia 2021 môn Toán lần 2 trường THPT Kim Liên – Hà Nội gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 001, 002, 003, 004; kỳ thi được diễn ra vào Chủ Nhật ngày 28 tháng 03 năm 2021. Trích dẫn đề thi thử THPT Quốc gia 2021 môn Toán lần 2 trường THPT Kim Liên – Hà Nội : + Một bạn sinh viên muốn có một khoản tiền để mua xe máy làm phương tiện đi làm sau khi ra trường. Bạn lên kế hoạch làm thêm và gửi tiết kiệm trong 2 năm cuối đại học. Vào mỗi đầu tháng bạn đều đặn gửi vào ngân hàng một khoản tiền T (đồng) theo hình thức lãi kép với lãi suất 0,56% mỗi tháng. Biết đến cuối tháng thứ 24 thì bạn đó có số tiền là 30 triệu đồng. Hỏi số tiền T gần với số tiền nào nhất trong các số sau? + Cho hai đường thẳng x’x, y’y chéo nhau và vuông góc với nhau. Trên x’x lấy cố định điểm A, trên y’y lấy cố định điểm B sao cho AB cùng vuông góc với Ax, By và AB = 2020cm. Gọi C, D là hai điểm lần lượt di chuyển trên hai tia Ax, By sao cho AC + BD = CD. Hỏi bán kính R của mặt cầu (S) ngoại tiếp tứ diện ABCD có giá trị nhỏ nhất thuộc khoảng nào sau đây? + Cho đường thẳng y = 2x và Parabol y = x2 + c (c là tham số thực dương). Gọi S1 và S2 lần lượt là diện tích của hai hình phẳng được gạch chéo trong hình vẽ bên. Khi S1 = S2 thì c gần với số nào nhất sau đây?
Đề thi thử TNTHPT 2021 môn Toán trường Nguyễn Tất Thành - Hà Nội
Ngày … tháng 03 năm 2021, trường THCS & THPT Nguyễn Tất Thành, Đại học Sư phạm Hà Nội tổ chức kiểm tra khảo sát thi tốt nghiệp THPT môn Toán năm học 2020 – 2021. Đề thi thử TNTHPT 2021 môn Toán trường Nguyễn Tất Thành – Hà Nội mã đề 101 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 101, 102, 103, 104. Trích dẫn đề thi thử TNTHPT 2021 môn Toán trường Nguyễn Tất Thành – Hà Nội : + Một khu rừng có trữ lượng gỗ là 7.106 mét khối. Biết tốc độ sinh trưởng của các cây trong khu rừng đó là 4% mỗi năm. Nếu hàng năm không khai thác thì sau 6 năm khu rừng đó có bao nhiêu mét khối gỗ? + Trong không gian tọa độ Oxyz cho ba điểm A(1; 0; 2), B(2; 3; −1), C(0; 3; 2) và mặt phẳng (P) : x − 2y + 2z − 7 = 0. Khi điểm M thay đổi trên mặt phẳng (P), hãy tìm giá trị nhỏ nhất của biểu thức E = |MA + MB + MC|. + Trong mặt phẳng tọa độ Oxy cho hàm số y = (2x + 2)/(x − 1) có đồ thị (C) và đường thẳng d : y = −x + m (m là tham số). Tìm m để đường thẳng d cắt đồ thị (C) tại hai điểm phân biệt.
Đề thi thử Toán TN THPT 2021 lần 2 trường chuyên Hạ Long - Quảng Ninh
Chủ Nhật ngày 28 tháng 03 năm 2021, trường THPT chuyên Hạ Long, tỉnh Quảng Ninh tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021 lần thứ hai. Đề thi thử Toán TN THPT 2021 lần 2 trường chuyên Hạ Long – Quảng Ninh được biên soạn theo hình thức đề 100% trắc nghiệm, đề gồm 05 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút. Trích dẫn đề thi thử Toán TN THPT 2021 lần 2 trường chuyên Hạ Long – Quảng Ninh : + Trong mặt phẳng (a) cho hai tia Ox, Oy góc xOy = 60 độ. Trên tia Oz vuông góc với mặt phẳng (a) tại O, lấy điểm S sao cho SO = a. Gọi M, N là các điểm lần lượt di động trên hai tia Ox, Oy sao cho OM + ON = a (a > 0 và M, N khác O). Gọi H, K lần lượt là hình chiếu vuông góc của O trên hai cạnh SM, SN. Mặt cầu ngoại tiếp đa diện MNHOK có diện tích nhỏ nhất bằng? + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SD = a3. Mặt bên SAB là tam giác cân và nằm trong mặt phẳng vuông góc với đáy. Gọi H là trung điểm của AB, K là trung điểm của AD. Khoảng cách giữa hai đường SD và HK bằng? + Cho một đa giác đều có 20 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập các tam giác có các đỉnh là các đỉnh của đa giác trên. Xác suất để chọn một tam giác từ tập X là tam giác vuông nhưng không phải là tam giác cân bằng?