Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG Toán 9 năm 2020 - 2021 phòng GDĐT Quận 1 - TP HCM

Đề thi chọn HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT Quận 1 – TP HCM gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 25 tháng 11 năm 2020. Trích dẫn đề thi chọn HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT Quận 1 – TP HCM : + Vào tháng 2 năm 2020, khi đang vào mùa thu hoạch, giá tôm hùm bất ngờ giảm mạnh do dịch bệnh COVID-19 không xuất khẩu được. Ông A cho biết phải bán 30% số tôm với giá 450 nghìn đồng mỗi kilôgam. Sau đó nhờ phong trào “giải cứu tôm hùm” nên đã bán được số tôm còn lại với giá 720 nghìn đồng mỗi kilôgam. Biết rằng mỗi kilôgam tôm thu hoạch được ông A đã đầu tư hết 500 nghìn đồng và nếu trừ đi số tiền đầu tư này thì ông lãi được 69,5 triệu đồng. a) Hỏi khối lượng tôm hùm ông A thu hoạch được là bao nhiêu kilôgam. b) Ông A cũng cho biết thêm rằng nếu không có dịch COVD-19 thì thương lái sẽ mua hết số tôm hùm với giá 1,2 triệu đồng mỗi kilôgam. Hỏi ông A thu được lợi nhuận bao nhiêu khi bán hết số tôm hùm nói trên nếu không có dịch COVID-19? + Cho đường tròn (O) đường kính AB. Trên đường tròn (O) lấy điểm C sao cho AC > BC. Tiếp tuyến tại A của đường tròn (O) cắt đường thẳng BC tại D. Gọi I là trung điểm của AD. a) Chứng minh: AC vuông góc với BD và IC là tiếp tuyến của đường tròn (O). b) Gọi M và N lần lượt là hình chiếu của C trên AB và AD. Chứng minh: √MB.MC + √NC.ND = √AB.AD. c) BI cắt đường tròn (O) tại K. Chứng minh: BKC = IKD.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện Toán 9 năm 2014 - 2015 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho biểu thức x x x x A 2 4 3 2 với x 0 1 x. a) Rút gọn biểu thức A. b) Tìm giá trị lớn nhất của biểu thức A. + Cho hàm số bậc nhất 2 y 1 3m x 5m 2 (1) và đường thẳng d: y 2x 3. a) Tìm giá trị của tham số m để hàm số (1) là hàm số đồng biến trên. b) Tìm giá trị của tham số m để đồ thị hàm số 2 y 1 3m x 5m 2 và đường thẳng d cắt nhau tại một điểm trên trục tung. c) Tìm trên đường thẳng d những điểm có tọa độ thoả mãn đẳng thức 2 2 x y xy 2 40. + Cho m là một số nguyên. Chứng minh rằng: a) 5 m m chia hết cho 30. b) Biểu thức 532 7 30 6 2 10 mmm m P là một số nguyên.
Đề học sinh giỏi huyện Toán 9 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho hai đường thẳng y = 6 + 2x và y = 3 – x. a. Tìm toạ độ giao điểm M của hai đường thẳng trên. b. Gọi giao điểm của hai đường thẳng trên với trục hoành theo thứ tự là A và B. Tính diện tích tam giác MAB. + Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B). a) Chứng minh: AMDE là tứ giác nội tiếp đường tròn. b) Chứng minh: MA2 = MD.MB c) Vẽ CH vuông góc với AB (H AB). Chứng minh rằng MB đi qua trung điểm của CH. + Cho 4 số thực a b c d thỏa mãn điều kiện: ac 2.(b + d) Chứng minh rằng có ít nhất một trong các bất đẳng thức sau là sai: a 4b 2 c 4d.
Đề học sinh giỏi huyện Toán 9 năm 2012 - 2013 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2012 – 2013 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2012 – 2013 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho tam giác nhọn ABC BC a CA b AB c. Chứng minh rằng: 222 a b c bc cosA. + Cho nửa đường tròn (O) đường kính BC. Trên tia đối của tia CB lấy điểm A, qua A kẻ tiếp tuyến AF với đường tròn (O) ( F là tiếp điểm). Tia AF cắt tia tiếp tuyến Bx của nửa đường tròn (O) tại D (tia tiếp tuyến Bx nằm trong nửa mặt phẳng bờ BC chứa nửa đường tròn (O)). Gọi H là giao điểm của BF với DO; K là giao điểm thứ hai của DC với nửa đường tròn (O). a) Chứng minh rằng AO.AB = AF.AD. b) Chứng minh DHK DCO. c) Kẻ OM vuông góc với BC (M thuộc đoạn AD). Chứng minh rằng 1 BD DM DM AM. + Cho hai số thực dương x, y thay đổi thỏa mãn điều kiện 3 4 x y. Tìm giá trị nhỏ nhất của biểu thức 1 1 A x xy.