Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT thành phố Ninh Bình

Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT thành phố Ninh Bình Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT thành phố Ninh Bình Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT thành phố Ninh Bình Trong đề thi chọn học sinh giỏi môn Toán lớp 8 THCS năm học 2022 - 2023 do phòng Giáo dục và Đào tạo thành phố Ninh Bình tổ chức, có những bài toán thú vị và đầy thách thức dành cho các em học sinh lớp 8. Trong số đó, một vài bài toán đặc biệt như sau: **Bài toán 1:** Một vật thể chuyển động từ A đến B theo cách sau: đi được 4m thì dừng lại 1 giây, rồi đi tiếp 8m dừng lại 2 giây, rồi đi tiếp 12m dừng lại 3 giây... Cứ như vậy đi từ A đến B kể cả dừng hết tất cả 155 giây. Biết rằng khi đi vật thể luôn có vận tốc 2m/giây. Hãy tính khoảng cách từ A đến B. **Bài toán 2:** Cho hình vuông ABCD. Qua A kẻ một đường thẳng cắt đoạn thẳng BC tại P (P khác B, P khác C) và cắt tia DC tại Q. Kẻ đường thẳng vuông góc với AP tại A, đường thẳng này cắt tia CB tại R và cắt tia CD tại S. Tia SP cắt QR tại H. Gọi M, N lần lượt là trung điểm của QR và SP. Chứng minh rằng: a) Tam giác AQR và APS là các tam giác vuông cân. b) Tứ giác AMHN là hình chữ nhật. c) MN là đường trung trực của đoạn thẳng AC. **Bài toán 3:** Cho tam giác ABC có góc ABC = 30°. Dựng bên ngoài tam giác ABC tam giác ACD vuông cân tại D. Chứng minh rằng 2BD² = BA² + BC² + BA.BC. Đây là những bài toán thú vị và mang tính logic cao, chắc chắn sẽ giúp các em học sinh lớp 8 rèn luyện tư duy và kỹ năng giải quyết vấn đề một cách hiệu quả. Hy vọng các em sẽ tự tin và thành công khi giải quyết các bài toán này!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh năng khiếu Toán 8 năm 2022 - 2023 phòng GDĐT Yên Lập - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh năng khiếu cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Yên Lập, tỉnh Phú Thọ; đề thi hình thức 40% trắc nghiệm khách quan + 60% tự luận, thời gian làm bài 120 phút, không kể thời gian giao đề. Trích dẫn Đề học sinh năng khiếu Toán 8 năm 2022 – 2023 phòng GD&ĐT Yên Lập – Phú Thọ : + Cho tam giác ABC vuông tại A, đường cao AH. Qua B vẽ đường thẳng vuông góc với BC cắt đường thẳng AC tại D. Tia phân giác của góc C cắt AB tại N và cắt BD tại M. Hệ thức nào đúng? + Một giải đấu bóng đá theo hình thức thi đấu vòng tròn một lượt. Mỗi đội thắng được cộng 3 điểm, mỗi đội hòa được cộng 1 điểm, đội thua không được điểm. Kết thúc trậ đấu, ban tổ chức nhận thấy số trận thắng gấp ba lần số trận hòa, tổng số điểm là 330 điểm. Hỏi có bao nhiêu đội tham gia? + Cho hình vuông ABCD. Trên tia đối của tia CD lấy điểm E bất kì sao cho CE < CD. Kẻ DM vuông góc với BE (M thuộc BE), DM cắt BC tại H, EH cắt BD tại I, AC cắt BD tại O. a) Chứng minh rằng EI vuông góc với BD. b) Chứng minh rằng MI là tia phân giác của góc BMD. c) Tìm vị trí điểm E sao cho tam giác AMD có diện tích lớn nhất.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT huyện Phúc Thọ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Phúc Thọ, thành phố Hà Nội; đề thi gồm 01 trang, hình thức tự luận với 05 bài toán, thời gian 120 phút (không kể giao đề); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT huyện Phúc Thọ – Hà Nội : + Tìm các số tự nhiên n để A = (𝑛2 − 8)2 + 36 là số nguyên tố. + Đa thức f(x) chia cho (x + 1) dư 4, chia cho 𝑥2 + 1 dư 2𝑥 + 3. Tìm đa thức dư khi chia 𝑓(𝑥) cho (𝑥 + 1)(𝑥2 + 1). + Cho tam giác ABC nhọn có các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh 𝐴𝐸𝐹 = 𝐴𝐵𝐶. b) Chứng minh BH.BE + CH.CF = 𝐵𝐶2. c) Chứng minh điểm H cách đều 3 cạnh của tam giác DEF. d) Trên đoạn thẳng HB, HC lần lượt lấy các điểm M, N sao cho HM = CN. Chứng minh đường trung trực của đoạn thẳng MN luôn đi qua một điểm cố định.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Hương Trà - TT Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp thị xã môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thị xã Hương Trà, tỉnh Thừa Thiên Huế; đề thi hình thức tự luận, gồm 01 trang với 04 bài toán, thời gian làm bài 120 phút. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Hương Trà – TT Huế : + Phân tích đa thức sau thành nhân tử: x4 + 2023×2 + 2022x + 2023. Tìm giá trị nhỏ nhất của M = 2×2 − 8x + 1. + Một người dự định đi xe máy từ A đến B với vận tốc 30km/h, nhưng sau khi đi được 1 giờ người ấy nghỉ hết 15 phút, do đó phải tăng vận tốc thêm 10km/h để đến B đúng giờ đã định. Tính quãng đường AB? + Cho tam giác ABC vuông tại A (AB < AC) có AD là tia phân giác của BAC. Gọi M và N lần lượt là hình chiếu của D trên AB và AC, E là giao điểm của BN và DM, F là giao điểm của CM và DN. a) Chứng minh tứ giác AMDN là hình vuông và EF // BC. b) Gọi H là giao điểm của BN và CM. Chứng minh ANB đồng dạng NFA và H là trực tâm AEF. c) Gọi giao điểm của AH và DM là K, giao điểm của AH và BC là O, giao điểm của BK và AD là I. Chứng minh: BI AO DM KI KO KM 9.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT thành phố Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi văn hóa cấp thành phố môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Bắc Giang; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 08 tháng 04 năm 2023. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT thành phố Bắc Giang : + Đa thức Q x nếu chia cho x − 1 được số dư bằng 4, nếu chia cho x − 3 được số dư bằng 14. Tìm đa thức dư của phép chia Q x cho (x x 1 3). Chứng minh rằng trong 14 số tự nhiên bất kỳ có ba chữ số, luôn tồn tại hai số sao cho khi ghép chúng lại cạnh nhau để được một số có sáu chữ số chia hết cho 13. + Cho tam giác ABC vuông tại A AB AC phân giác trong AD (D BC), gọi M là trung điểm của đoạn thẳng BC, trên tia đối của tia DA lấy điểm K sao cho 0 KBC 45, đường thẳng qua A vuông góc với AD cắt KM tại N. a) Chứng minh rằng ∆BDK ∆ADC và tam giác KBC vuông cân. b) Phân giác của ABC cắt AD tại I. Gọi E là giao điểm của AC và MN. Chứng minh rằng: 0 ENC 45 và 2 KI KM KN. + Cho tam giác ABC có trung tuyến AD D BC. Trên đoạn thẳng AD lấy điểm K sao cho 3 AK KD. Gọi E là giao điểm của đường thẳng BK và AC. Tính tỉ số diện tích tam giác ABE và diện tích tam giác BCE.