Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập Toán 10 học kì 1 - Nguyễn Văn Thanh

Tài liệu gồm 94 trang, được biên soạn bởi thầy giáo Nguyễn Văn Thanh, tuyển tập bài tập Toán 10 học kì 1 theo các dạng bài. ĐẠI SỐ 10 – QUYỂN 1 – HỌC KỲ 1. CHƯƠNG I. MỆNH ĐỀ – TẬP HỢP. Bài 1. Mệnh đề. Bài 2. Tập hợp + Bài 3. Các phép toán tập hợp. + Dạng 1. Phần tử của tập hợp, các xác định tập hợp. + Dạng 2. Tập hợp con, tập hợp bằng nhau. + Dạng 3. Các phép toán trên tập hợp. Bài 3. Các tập hợp số. + Dạng 1. Biểu diễn tập hợp số. + Dạng 2. Các phép toán trên tập hợp số. + Dạng 3. Các bài toán tìm điều kiện của tham số. CHƯƠNG II. HÀM SỐ BẬC NHẤT VÀ BẬC HAI. Bài 1. Hàm số. + Dạng 1. Tập xác định của hàm số. + Dạng 1.1 Hàm số phân thức. + Dạng 1.2 Hàm số chứa căn thức. + Dạng 1.3 Tìm tập xác định của hàm số có điều kiện. + Dạng 2. Tính chẵn, lẻ của hàm số. + Dạng 2.1 Xác định tính chẵn, lẻ của hàm số cho trước. + Dạng 2.2 Xác định tính chẵn, lẻ thông qua tính chất của đồ thị hàm số. + Dạng 2.3 Xác định tính chẵn, lẻ của hàm số có điều kiện cho trước. + Dạng 3. Sự biến thiên của hàm số. + Dạng 3.1 Xác định sự biến thiên của hàm số cho trước. + Dạng 3.2 Xác định sự biến thiên thông qua đồ thị của hàm số. + Dạng 4. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số. + Dạng 4.1 Biến đổi sử dụng tập giá trị của hàm số. + Dạng 4.2 Phân tích hằng đẳng thức. + Dạng 4.3 Áp dụng bất đẳng thức Cô-si, Bu-nhi-a-cốp-xki. + Dạng 5. Một số bài toán liên quan đến đồ thị của hàm số. + Dạng 6. Xác định biểu thức của hàm số. Bài 2. Hàm số y = ax + b. + Dạng 1. Chiều biến thiên của hàm số bậc nhất. + Dạng 1.1 Xét tính đồng biến, nghịch biến của hàm số. + Dạng 1.2 Định m để hàm số đồng biến, nghịch biến trên R. + Dạng 2. Vị trí tương đối, sự tương giao giữa các đường thẳng, điểm cố định của họ đường thẳng. + Dạng 2.1 Vị trí tương đối. + Dạng 2.2 Sự tương giao. + Dạng 2.3 Điểm cố định của họ đường thẳng. + Dạng 3. Đồ thị hàm số bậc nhất. + Dạng 3.1 Đồ thị hàm số y = ax + b. + Dạng 3.2 Đồ thị hàm số chứa dấu giá trị tuyệt đối. + Dạng 4. Xác định hàm số thỏa mãn điều kiện cho trước. + Dạng 4.0 Xác định điều kiện để hàm số đã cho là hàm số bậc nhất. + Dạng 4.1 Đi qua 2 điểm cho trước. + Dạng 4.2 Đi qua 1 điểm cho trước và song song (vuông góc, cắt, đối xứng …) với một đường thăng khác. + Dạng 4.3 Liên quan đến diện tích, khoảng cách. Bài 3. Hàm số bậc hai. + Dạng 1. Chiều biến thiên của hàm số bậc hai. + Dạng 1.1 Xác định chiều biến thiên thiên của hàm số cho trước. + Dạng 1.2 Xác định m thỏa mãn điều kiện cho trước. + Dạng 2. Xác định hàm số bậc hai thỏa mãn điều kiện cho trước. + Dạng 2.1 Xác định tọa độ đỉnh, trục đối xứng của đồ thị hàm số. + Dạng 2.2 Khi biết tọa độ đỉnh và điểm đi qua. + Dạng 2.3 Khi biết các điểm đi qua. + Dạng 3. Đọc đồ thị, bảng biến thiên của hàm số bậc hai. + Dạng 3.1 Xác định hình dáng của đồ thị, bảng biến thiên khi biết hàm số. + Dạng 3.2 Xác định dấu hệ số của hàm số khi biết đồ thị của nó. + Dạng 3.3 Xác định hàm số khi biết đồ thị của nó. + Dạng 3.4 Đồ thị hàm số chứa dấu giá trị tuyệt đối. + Dạng 4. Giá trị lớn nhất, giá trị nhỏ nhất. + Dạng 4.1 Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số cho trước. + Dạng 4.2 Tìm m thỏa mãn điều kiện cho trước. + Dạng 5. Sự tương giao giữa parabol với đồ thị các hàm số khác. + Dạng 5.1 Sự tương giao đồ thị của các hàm số tường minh số liệu. + Dạng 5.2 Biện luận tương giao đồ thị theo tham số m. + Dạng 5.3 Bài toán tương giao đồ thị hàm số chứa dấu giá trị tuyệt đối. HÌNH HỌC 10 – QUYỂN 1- HỌC KỲ 1. CHƯƠNG I. VECTƠ. Bài 1. Các định nghĩa. + Dạng 1. Các bài toán về khái niệm véctơ. + Dạng 2. Chứng minh đẳng thức véctơ. + Dạng 3. Xác định điểm thỏa mãn điều kiện cho trước. + Dạng 4. Tìm tập hợp điểm thỏa mãn điều kiện cho trước. + Dạng 5. Phân tích vectơ qua hai vectơ không cùng phương. + Dạng 6. Xác định và tính độ lớn véctơ. Bài 2. Hệ trục tọa độ. + Dạng 1. Sử dụng các kiến thức về trục, tọa độ vectơ trên trục và tọa độ của một điểm trên trục để giải một số bài toán. + Dạng 2. Tọa độ vectơ. + Dạng 2.1 Sử dụng các công thức tọa độ của tổng, hiệu, tích vectơ với một số để giải toán. + Dạng 2.2 Điều kiện 2 véc tơ cùng phương, thẳng hàng, bằng nhau. + Dạng 2.3 Biểu diễn một vectơ theo 2 vectơ không cùng phương. + Dạng 3. Tọa độ điểm. + Dạng 3.1 Xác định tọa độ trung điểm, tọa độ trọng tâm, tọa độ điểm đối xứng. + Dạng 3.2 Xác định tọa độ điểm thỏa mãn điều kiện cho trước. + Dạng 3.3 Một số bài toán gtln-gtnn của biểu thức chứa véctơ. CHƯƠNG II. TÍCH VÔ HƯỚNG CỦA HAI VÉCTƠ VÀ ỨNG DỤNG. Bài 1. Giá trị lượng giác của một góc bất kì từ 0 đến 180. + Dạng 1. Dấu của các giá trị lượng giác. Giá trị lượng giác. + Dạng 2. Cho biết một giá trị lượng giác, tính các giá trị lượng giác còn lại. + Dạng 3. Chứng minh, rút gọn biểu thức lượng giác. + Dạng 4. Tính giá trị biểu thức lượng giác. Bài 2. Tích vô hướng của hai vec to và ứng dụng. + Dạng 1. Tích vô hướng. + Dạng 2. Xác định góc của hai véctơ. + Dạng 3. Ứng dụng tích vô hướng chứng minh vuông góc. + Dạng 4. Một số bài toán liên quan đến độ dài véctơ. Bài 3. Các hệ thức lượng trong tam giác, giải tam giác. + Dạng 1. Định lý cosin, áp dụng định lý cosin để giải tam giác.

Nguồn: toanmath.com

Đọc Sách

18 bài tập tọa độ phẳng có lời giải - phần đường Conic - Trần Sĩ Tùng
Tài liệu gồm 5 trang với 18 bài tập về chuyên đề đường Conic, các bài tập được phân tích và giải chi tiết. Tài liệu do thầy Trần Sĩ Tùng biên soạn.
Phân dạng và bài tập có lời giải chi tiết Hình học giải tích phẳng - Lưu Huy Thưởng
Tài liệu gồm 101 trang tuyển tập các bài toán hình học giải tích trong mặt phẳng, các bài toán được phân dạng và giải chi tiết. Tài liệu do thầy Lưu Huy Thưởng biên soạn. [ads]
Bài tập vận dụng - vận dụng cao và ứng dụng thực tế môn Toán 10
Tài liệu gồm 233 trang, tuyển chọn các bài tập mức độ vận dụng – vận dụng cao và ứng dụng thực tế môn Toán 10 chương trình mới (GDPT 2018), có đáp án và lời giải chi tiết. Chủ đề 1. VD – VDC và bài toán ứng dụng thực tế chuyên đề mệnh đề và tập hợp. Chủ đề 2. VD – VDC và bài toán ứng dụng thực tế chuyên đề bất phương trình và hệ bất phương trình bậc nhất hai ẩn. Chủ đề 3. VD – VDC và bài toán ứng dụng thực tế chuyên đề hệ thức lượng trong tam giác. Chủ đề 4. VD – VDC và bài toán ứng dụng thực tế chuyên đề vectơ. Chủ đề 5. VD – VDC và bài toán ứng dụng thực tế chuyên đề hàm số, đồ thị và ứng dụng. Chủ đề 6. VD – VDC và bài toán ứng dụng thực tế chuyên đề phương pháp toạ độ trong mặt phẳng.
Bài tập tự luận và trắc nghiệm Toán 10 Cánh Diều có đáp án và lời giải
Tài liệu gồm 1581 trang, được biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển tập các dạng bài tập tự luận và trắc nghiệm môn Toán 10 Cánh Diều, có đáp án và lời giải chi tiết. CHƯƠNG 1 . MỆNH ĐỀ TOÁN HỌC VÀ TẬP HỢP. BÀI 1. MỆNH ĐỀ TOÁN HỌC. + Dạng 1. Mệnh đề toán học, mệnh đề chứa biến. + Dạng 2. Mệnh đề kéo theo, mệnh đề đảo. + Dạng 3. Mệnh đề tương đương. + Dạng 4. Mệnh đề phủ định. Mệnh đề chứa kí hiệu ∀, ∃. BÀI 2. TẬP HỢP. CÁC PHÉP TOÁN TRÊN TẬP HỢP. + Dạng 1. Xác định tập hợp. + Dạng 2. Tập hợp con, tập bằng nhau. + Dạng 3. (Nâng cao) Sơ đồ ven. + Dạng 4. Biểu diễn tập hợp số. + Dạng 5. Các phép toán trên tập hợp. + Dạng 6. (Nâng cao) Các bài toán tìm điều kiện của tham số. CHƯƠNG 2 . BẤT PHƯƠNG TRÌNH VÀ HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. BÀI 1. BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. BÀI 2. HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. + Dạng 1. Hệ bất phương trình bậc nhất hai ẩn. + Dạng 2. Bài toán thức tế; tìm GTLN – GTNN. CHƯƠNG 3 . HÀM SỐ VÀ ĐỒ THỊ. BÀI 1. HÀM SỐ VÀ ĐỒ THỊ. + Dạng 1. Tập xác định của hàm số. + Dạng 2. Sự biến thiên của hàm số. + Dạng 3. Tập giá trị, giá trị lớn nhất và giá trị nhỏ nhất của hàm số. + Dạng 4. Một số bài toán liên quan đến đồ thị của hàm số. + Dạng 5. Xác định biểu thức của hàm số. BÀI 2. HÀM SỐ BẬC HAI. ĐỒ THỊ HÀM SỐ BẬC HAI VÀ ỨNG DỤNG. + Dạng 1. Khảo sát sự biến thiên và vẽ đồ thị. + Dạng 2. Xác định hàm số bậc hai thỏa mãn điều kiện cho trước. + Dạng 3. Sự tương giao giữa parabol với đồ thị các hàm số khác. + Dạng 4. Một số câu hỏi thực tế liên quan đến hàm số bậc hai. BÀI 3. DẤU CỦA TAM THỨC BẬC HAI. + Dạng. Dấu của tam thức bậc hai. BÀI 4. BẤT PHƯƠNG TRÌNH BẬC HAI MỘT ẨN. + Dạng 1. Bất phương trình bậc hai. + Dạng 2. Bài toán tham số liên quan đến tam thức bậc hai. + Dạng 3. Ứng dụng của bất phương trình bậc hai một ẩn. BÀI 5. HAI DẠNG PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI. CHƯƠNG 4 . HỆ THỨC LƯỢNG TRONG TAM GIÁC, VECTƠ. BÀI 1. GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC TỪ 0° ĐẾN 180°. ĐỊNH LÍ CÔSIN VÀ ĐỊNH LÍ SIN TRONG TAM GIÁC. + Dạng 1. Giá trị lượng giác của một góc từ 0° đến 180°. + Dạng 2. Định lí cosin. + Dạng 3. Định lí sin. BÀI 2. GIẢI TAM GIÁC. + Dạng 1. Giải tam giác. + Dạng 2. Tính diện tích tam giác. + Dạng 3. Áp dụng vào bài toán thực tiễn. + Dạng 4. Nhận dạng tam giác. BÀI 3. KHÁI NIỆM VECTƠ. BÀI 4. TỔNG VÀ HIỆU CỦA HAI VECTƠ. + Dạng 1. Cộng trừ véctơ. + Dạng 2. Xác định điểm thỏa mãn điều kiện. + Dạng 3. Tính độ dài véctơ. BÀI 5. TÍCH CỦA MỘT SỐ VỚI MỘT VECTƠ. + Dạng 1. Dựng và tính độ dài véc–tơ. + Dạng 2. Phân tích véc-tơ. + Dạng 3. Chứng minh đẳng thức véc-tơ. + Dạng 4. Chứng minh một biểu thức véc–tơ không phụ thuộc vào điểm di động. + Dạng 5. Chứng minh hai điểm trùng nhau, hai tam giác có cùng trọng tâm. + Dạng 6: thẳng hàng, cố định, đồng qui. + Dạng 7. Xác định điểm, tập hợp điểm thoả mãn đẳng thức véc-tơ. BÀI 6. TÍCH VÔ HƯỚNG CỦA HAI VECTƠ. + Dạng 1. Tính tích vô hướng của hai vectơ, tính góc giữa hai vectơ. + Dạng 2. Tính độ dài của một đoạn thẳng. + Dạng 3. Chứng minh đẳng thức về tích vô hướng. + Dạng 4. Chứng minh sự vuông góc của hai vectơ, hai đường thẳng. + Dạng 5. Tập hợp điểm. CHƯƠNG 5 . ĐẠI SỐ TỔ HỢP. BÀI 1. QUY TẮC CỘNG VÀ QUY TẮC NHÂN. SƠ ĐỒ HÌNH CÂY. BÀI 2. HOÁN VỊ. CHỈNH HỢP. + Dạng 1. Hoán vị. + Dạng 2. Chỉnh hợp. BÀI 3. TỔ HỢP. + Dạng 1. Tổ hợp. + Dạng 2. Kết hợp hoán vị, chỉnh hợp, tổ hợp. BÀI 4. NHỊ THỨC NEWTON. CHƯƠNG 6 . MỘT SỐ YẾU TỐ THỐNG KÊ VÀ XÁC SUẤT. BÀI 1. SỐ GẦN ĐÚNG VÀ SAI SỐ. BÀI 2. CÁC SỐ ĐẶC TRƯNG ĐO XU THẾ TRUNG TÂM CHO MẪU SỐ LIỆU KHÔNG GHÉP NHÓM. BÀI 3. CÁC SỐ ĐẶC TRƯNG ĐO MỨC ĐỘ PHÂN TÁN CHO MẪU SỐ LIỆU KHÔNG GHÉP NHÓM. BÀI 4. XÁC SUẤT CỦA BIẾN CỐ TRONG MỘT SỐ TRÒ CHƠI ĐƠN GIẢN. BÀI 5. XÁC SUẤT CỦA BIẾN CỐ. CHƯƠNG 7 . PHƯƠNG PHÁP TOẠ ĐỘ TRONG MẶT PHẲNG. BÀI 1. TOẠ ĐỘ CỦA VECTƠ. + Dạng 1. Tìm toạ độ của vectơ. + Dạng 2. Tìm điều kiện để hai vectơ bằng nhau, chứng minh hai vectơ bằng nhau. + Dạng 3. Tìm toạ độ của một điểm thoả mãn điều kiện cho trước. BÀI 2. BIỂU THỨC TOẠ ĐỘ CỦA CÁC PHÉP TOÁN VECTƠ. + Dạng 1. Trục tọa độ. + Dạng 2. Tọa độ véctơ. + Dạng 3. Tọa độ điểm. + Dạng 4. Ứng dụng. BÀI 3. PHƯƠNG TRÌNH ĐƯỜNG THẲNG. + Dạng 1. Viết phương trình tổng quát của đường thẳng. + Dạng 2. Phương trình tham số của đường thẳng. + Dạng 3. Phương trình chính tắc của đường thẳng. BÀI 4. VỊ TRÍ TƯƠNG ĐỐI VÀ GÓC GIỮA HAI ĐƯỜNG THẲNG. KHOẢNG CÁCH TỪ MỘT ĐIỂM ĐẾN MỘT ĐƯỜNG THẲNG. + Dạng 1. Vị trí tương đối của hai đường thẳng. + Dạng 2. Khoảng cách từ một điểm đến một đường thẳng. + Dạng 3. Góc giữa hai đường thẳng. + Dạng 4. Tìm điểm thỏa mãn điều kiện cho trước. + Dạng 5. Các yếu tố về tam giác. + Dạng 6. Các yếu tố về tứ giác. + Dạng 7. Câu toán cực trị. BÀI 5. PHƯƠNG TRÌNH ĐƯỜNG TRÒN. + Dạng 1. Nhận dạng phương trình đường tròn. + Dạng 2. Thiết lập phương trình đường tròn. + Dạng 3. Vị trí tương đối của đường thẳng và đường tròn. + Dạng 4. Tiếp tuyến của đường tròn. + Dạng 5. Tìm điểm thỏa mãn điều kiện cho trước. + Dạng 6. Tìm quỹ tích tâm đường tròn. BÀI 6. BA ĐƯỜNG CONIC. + Dạng 1. Các bài toán liên quan elip. + Dạng 2. Các bài toán liên quan hypebol. + Dạng 3. Các bài toán liên quan parabol. + Dạng 4. Các bài toán liên quan đường cônic.