Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập 651 bài tập trắc nghiệm số phức cơ bản và nâng cao - Nguyễn Bảo Vương

Tài liệu gồm 95 trang tuyển chọn 416 bài tập trắc nghiệm số phức cơ bản và 235 bài tập trắc nghiệm số phức nâng cao có đáp án, tài liệu được biên soạn bởi thầy Nguyễn Bảo Vương nhằm cung cấp thêm ngân hàng đề thi trắc nghiệm số phức cho giáo viên trong quá trình giảng dạy và giúp học sinh có thêm nguồn đề số phức tham khảo, rèn luyện trong quá trình học chương trình Giải tích 12 chương 4. PHẦN 1 : 416 BÀI TẬP TRẮC NGHIỆM SỐ PHỨC CƠ BẢN Dạng toán 1. Các phép tính về số phức và các bài toán định tính. Các phép tính về số phức: Sử dụng các công thức cộng, trừ, nhân, chia và lũy thừa số phức. Số phức và thuộc tính của nó: + Tìm phần thực và phần ảo z = a + bi, suy ra phần thực a, phần ảo b. + Biểu diễn hình học của số phức. Dạng toán 2. Biểu diễn hình học của số phức và ứng dụng. Dạng toán 3. Căn bậc hai của số phức và phương trình bậc hai. Định nghĩa về căn bậc hai của số phức và những điểm cần lưu ý. Hướng dẫn phương pháp tìm căn bậc hai của số phức. Phương trình bậc hai với hệ số phức và phương pháp giải, định lý Vi-et. PHẦN 2 : 235 BÀI TẬP TRẮC NGHIỆM SỐ PHỨC NÂNG CAO – CỰC CAO Dạng toán 1. Các phép tính về số phức và các bài toán định tính. Dạng toán 2. Dạng lượng giác của số phức. Công thức De – Moivre: Có thể nói công thức De – Moivre là một trong những công thức thú vị và là nền tảng cho một loạt công thức quan trọng khác sau này như phép luỹ thừa, khai căn số phức, công thức Euler. Dạng toán 3. Cực trị của số phức. [ads] Trích dẫn tài liệu tuyển tập 651 bài tập trắc nghiệm số phức cơ bản và nâng cao – Nguyễn Bảo Vương : + Trên tập số phức, cho phương trình sau: (z + i)^4 + 4z^2 = 0. Có bao nhiêu nhận xét đúng trong số các nhận xét sau? 1. Phương trình vô nghiệm trên trường số thực. 2. Phương trình vô nghiệm trên trường số phức. 3. Phương trình không có nghiệm thuộc tập số thực. 4. Phương trình có bốn nghiệm thuộc tập số phức. 5. Phương trình chỉ có hai nghiệm là số phức. 6. Phương trình có hai nghiệm là số thực. + Cho số phức z thỏa |z – 1 + i| = 2. Chọn phát biểu đúng: A. Tập hợp điểm biểu diễn số phức z là một đường thẳng. B. Tập hợp điểm biểu diễn số phức z là một đường Parabol. C. Tập hợp điểm biểu diễn số phức z là một đường tròn có bán kính bằng 2. D. Tập hợp điểm biểu diễn số phức z là một đường tròn có bán kính bằng 4. + Cho số phức z thỏa |z + 2| = |1 – z|. Chọn phát biểu đúng: A. Tập hợp điểm biểu diễn số phức z là một đường thẳng. B. Tập hợp điểm biểu diễn số phức z là một đường Parabol. C. Tập hợp điểm biểu diễn số phức z là một đường tròn. D. Tập hợp điểm biểu diễn số phức z là một đường Elip.

Nguồn: toanmath.com

Đọc Sách

500 bài tập chọn lọc thể tích khối đa diện - Lê Minh Tâm
Tài liệu gồm 326 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, tuyển chọn 500 bài tập trắc nghiệm chủ đề thể tích khối đa diện trong chương trình môn Toán 12 phần Hình học chương 1, có đáp án và lời giải chi tiết. Trích dẫn tài liệu 500 bài tập chọn lọc thể tích khối đa diện – Lê Minh Tâm: + Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, cạnh bên SA vuông góc với đáy, SA = 3a và thể tích của khối chóp bằng a3. Tính độ dài cạnh đáy AB. + Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a, SA vuông góc (ABC). Góc giữa hai mặt phẳng (SBC) và (ABC) bằng 30. Thể tích khối chóp S.ABC là? + Cho hình chóp S.ABC có thể tích V = 2a3 và đáy ABC là tam giác vuông cân tại A biết AB = a. Tính h là khoảng cách từ S đến mặt phẳng (ABC).
Hệ thống dạng toán và bài tập chuyên đề thể tích khối đa diện
Tài liệu gồm 123 trang, được biên soạn bởi thầy giáo Lê Bá Bảo (trường THPT Đặng Huy Trứ – Admin CLB Giáo Viên Trẻ TP Huế), tuyển tập hệ thống dạng toán và bài tập chuyên đề thể tích khối đa diện trong chương trình môn Toán 12 phần Hình học. TỔNG HỢP MỘT SỐ DẠNG TÍNH THỂ TÍCH CẦN LƯU Ý. Dạng 1: Hình chóp tam giác có cạnh bên vuông góc với đáy. Dạng 2: Hình chóp tứ giác có cạnh bên vuông góc với đáy. Dạng 3: Hình chóp tam giác đều. Dạng 4: Hình chóp tứ giác đều. Dạng 5: Hình chóp tam giác có mặt bên là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Dạng 6: Hình chóp tứ giác có mặt bên là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Dạng 7: Hình lăng trụ đều. Dạng 8: Hình lăng trụ đứng. Dạng 9: Hình lăng trụ có đường cao khác cạnh bên. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP THỂ TÍCH KHỐI ĐA DIỆN TRONG ĐỀ THI THPT QUỐC GIA.
Bài tập trắc nghiệm thể tích khối đa diện vận dụng cao
Tài liệu gồm 64 trang, tuyển chọn các bài tập trắc nghiệm thể tích khối đa diện vận dụng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình Toán 12 phần Hình học chương 1: Khối Đa Diện Và Thể Tích Của Chúng. THỂ TÍCH KHỐI ĐA DIỆN: Phần 1. Thể tích khối đa diện. Phần 2. Tỷ số thể tích. Phần 3. Cực trị.
Bài tập tổng ôn khối đa diện và thể tích khối đa diện có đáp án
Tài liệu gồm 33 trang, tuyển chọn các bài tập tổng ôn khối đa diện và thể tích khối đa diện có đáp án, giúp học sinh lớp 12 rèn luyện sau khi học xong chương trình Toán 12 phần Hình học chương 1: Khối Đa Diện Và Thể Tích Của Chúng. MỤC LỤC : Bài 1 . TỔNG QUAN VỀ HÌNH ĐA DIỆN, KHỐI ĐA DIỆN 2. A BÀI TẬP TẠI LỚP 2. B BÀI TẬP TỰ LUYỆN 4. + Mức độ Dễ 4. + Mức độ Trung bình 5. + Mức độ Khá 6. Bài 2 . THỂ TÍCH KHỐI CHÓP 7. A BÀI TẬP TẠI LỚP 7. B BÀI TẬP TỰ LUYỆN 12. + Mức độ Dễ 12. + Mức độ Trung bình 13. + Mức độ Khá 14. + Mức độ Khó 14. Bài 3 . THỂ TÍCH KHỐI LĂNG TRỤ 16. A BÀI TẬP TẠI LỚP 16. B BÀI TẬP TỰ LUYỆN 18. + Mức độ Dễ 18. + Mức độ Trung bình 19. + Mức độ Khá 20. + Mức độ Khó 21. Bài 4 . PHÂN CHIA KHỐI ĐA DIỆN. TỈ SỐ THỂ TÍCH 23. A BÀI TẬP TẠI LỚP 23. B BÀI TẬP TỰ LUYỆN 25. + Mức độ Dễ 25. + Mức độ Trung bình 26. + Mức độ Khá 26. + Mức độ Khó 27. ĐỀ ÔN TẬP CUỐI CHƯƠNG 28. + Đề số 1 28. + Đề số 2 30. ĐÁP ÁN CÁC TRẮC NGHIỆM CÁC CHỦ ĐỀ 33. + Đáp án Bài 1 33. + Đáp án Bài 2 33. + Đáp án Bài 3 33. + Đáp án Bài 4 33. + Đáp án đề ôn chương 33.