Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề tổ hợp - xác suất - Bùi Trần Duy Tuấn

giới thiệu đến bạn đọc tài liệu chuyên đề tổ hợp – xác suất do thầy Bùi Trần Duy Tuấn biên soạn, tài liệu gồm 180 trang bao gồm kiến thức cơ bản, phân dạng toán, ví dụ minh họa và tuyển chọn các bài tập trắc nghiệm có lời giải chi tiết các chủ đề quy tắc đếm, hoán vị – chỉnh hợp – tổ hợp, tính toán liên quan đến các công thức, nhị thức NewTơn, biến cố và xác suất của biến cố trong chương trình Đại số và Giải tích 11 chương 2. Tài liệu thích hợp với học sinh khối 11 trong quá trình tự học chương tổ hợp – xác suất và học sinh khối 12 nhằm ôn tập lại các kiến thức tổ hợp – xác suất đã học để chuẩn bị cho kỳ thi THPT Quốc gia. CHỦ ĐỀ 1 : QUY TẮC ĐẾM A. Kiến thức cơ bản cần nắm 1. Quy tắc cộng 2. Quy tắc nhân 3. Các bài toán đếm cơ bản B. Một số bài toán minh họa C. Bài tập trắc nghiệm CHỦ ĐỀ 2 : HOÁN VỊ – CHỈNH HỢP – TỔ HỢP A. Kiến thức cơ bản cần nắm 1. Hoán vị 2. Chỉnh hợp 3. Tổ hợp B. Một số bài toán điển hình C. Bài tập trắc nghiệm + Dạng 1. Bài toán đếm + Dạng 2. Xếp vị trí – cách chọn, phân công công việc + Dạng 3. Đếm tổ hợp liên quan đến hình học CHỦ ĐỀ 3 : TÍNH TOÁN LIÊN QUAN ĐẾN CÁC CÔNG THỨC A. Nhắc lại các công thức B. Bài tập trắc nghiệm [ads] CHỦ ĐỀ 4 : NHỊ THỨC NEWTƠN A. Kiến thức cần nắm 1. Công thức nhị thức Newtơn 2. Tam giác Pascal B. Các dạng toán liên quan đến nhị thức Newtơn 1. Xác định các hệ số trong khai triển nhị thức Newtơn a. Tìm hệ số của số hạng chứa x^m trong khai triển (ax^p + bx^q)^n b. Xác định hệ số lớn nhất trong khai triển nhị thức Niutơn c. Xác định hệ số của số hạng trong khai triển P(x) = (ax^t + bx^p + cx^q)^n 2. Các bài toán tìm tổng a. Thuần nhị thức Newton b. Sử dụng đạo hàm cấp 1, cấp 2 c. Sử dụng tích phân C. Bài tập trắc nghiệm + Dạng 1. Xác định các hệ số, số hạng trong khai triển nhị thức Newton + Dạng 2. Các bài toán tìm tổng CHỦ ĐỀ 5 : BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ A. Kiến thức cần nắm 1. Phép thử ngẫu nhiên và không gian mẫu 2. Biến cố 3. Xác suất của biến cố B. Các dạng toán về xác suất 1. Sử dụng định nghĩa cổ điển về xác xuất – quy về bài toán đếm a. Bài toán tính xác suất sử dụng định nghĩa cổ điển bằng cách tính trực tiếp số phần tử thuận lợi cho biến cố b. Tính xác suất sử dụng định nghĩa cổ điển bằng phương pháp gián tiếp 2. Sử dụng quy tắc tính xác suất a. Phương pháp b. Một số bài toán minh họa C. Bài tập trắc nghiệm + Dạng 1. Xác định phép thử, không gian mẫu và biến cố + Dạng 2. Tìm xác suất của biến cố + Dạng 3. Các quy tắc tính xác suất

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tổ hợp và xác suất
Tài liệu gồm 215 trang phân dạng và hướng dẫn giải các dạng toán tổ hợp và xác suất trong chương trình Đại số và Giải tích 11 chương 1. Khái quát nội dung chuyên đề tổ hợp và xác suất: 1 TỔNG QUAN KIẾN THỨC TỔ HỢP – XÁC SUẤT 1 Các quy tắc đếm. A Bài tập mẫu. B Bài tập mẫu. 2 Chỉnh hợp. A Bài tập mẫu. 3 Hoán vị. A Bài tập mẫu. 4 Tổ hợp. A Tóm tắt lí thuyết. B Bài tập mẫu. C Bài tập rèn luyện. 2 CÁC DẠNG TOÁN TỔ HỢP Dạng 0.1. Rút gọn một biểu thức chứa chỉnh hợp – hoán vị – tổ hợp. Dạng 0.2. Giải phương trình liên quan đến chỉnh hợp – tổ hợp – hoán vị. Dạng 0.3. Giải bất phương trình liên quan đến chỉnh hợp – hoán vị – tổ hợp. Dạng 0.4. Giải hệ phương trình chỉnh hợp – hoán vị – tổ hợp. Dạng 0.5. Chứng minh một đẳng thức tổ hợp. Dạng 0.5. Chứng minh một đẳng thức tổ hợp (Cách 2). Dạng 0.5. Chứng minh một đẳng thức tổ hợp (Cách 3). Dạng 0.5. Chứng minh một đẳng thức tổ hợp (Cách 4). Dạng 0.5. Chứng minh một đẳng thức tổ hợp (Cách 5 – dùng đạo hàm). Dạng 0.5. Chứng minh một đẳng thức tổ hợp (Cách 6 – dùng tích phân). Dạng 0.6. Tính tổng một biểu thức tổ hợp. Dạng 0.7. Tìm hệ số của một số hạng hoặc tìm một số hạng (không có giả thiết). Dạng 0.8. Tìm hệ số của một số hạng hoặc tìm một số hạng (có giả thiết). Dạng 0.9. Chứng minh bất đẳng thức tổ hợp. [ads] 3 CÁC DẠNG TOÁN LÝ LUẬN Dạng 0.10. Đếm số dùng quy tắc nhân và quy tắc cộng. Dạng 0.11. Bài toán đếm số – Dùng chỉnh hợp. Dạng 0.12. Bài toán sắp xếp đồ vật. Dạng 0.13. Bài toán sắp xếp người. Dạng 0.14. Bài toán chọn vật, dùng tổ hợp. Dạng 0.15. Bài toán chọn về người – Dùng tổ hợp. Dạng 0.16. Bài toán chọn về người – Dùng tổ hợp. Dạng 0.17. Bài toán phân chia tập hợp – dùng tổ hợp. Dạng 0.18. Đếm số điểm, số đoạn thẳng, số góc, số đa giác, số miền. 1 Bộ đề số 1. 2 Bộ đề số 2. 3 Bộ đề số 3. 4 Bộ đề số 4. 5 Bộ đề số 5. 4 CÁC BÀI TOÁN XÁC SUẤT THI HỌC SINH GIỎI Dạng 0.1. Bài toán chia hết. Dạng 0.2. Số lần xuất hiện của chữ số. Dạng 0.3. Liên quan đến vị trí. Dạng 0.4. Các bài toán đếm số phương án, tính xác suất liên quan người, đồ vật. Dạng 0.5. Các bài toán đếm số phương án. Tính xác suất liên quan đến đa giác. Dạng 0.6. Các bài toán đếm, sắp xếp liên quan đến vị trí, xếp chỗ.
Các dạng toán nhị thức Newton và các bài toán liên quan
Tài liệu gồm 39 trang được tổng hợp và biên soạn bởi thầy Nguyễn Bảo Vương, tuyển tập 126 câu hỏi và bài tập trắc nghiệm nhị thức Newton (Niu-tơn) và các bài toán liên quan, có đáp án và lời giải chi tiết, giúp học sinh học tốt bài 3 chương 2 Đại số và Giải tích 11. Mục lục tài liệu các dạng toán nhị thức Newton và các bài toán liên quan: Phần A . CÂU HỎI Dạng 1. Tiếp cận với khai triển nhị thức Newton (Trang 2). Dạng 2. Tìm hệ số, số hạng trong khai triển nhị thức Newton (Trang 3). Dạng 2.1 Khai triển của 1 biểu thức (Trang 3). Dạng 2.1.1 Bài toán tìm hệ số của số hạng (Trang 3). Dạng 2.1.2 Bài toán tìm số hạng thứ k (Trang 4). Dạng 2.1.3 Bài toán tìm hệ số, số hạng trong khai triển nhị thức có thêm điều kiện (Trang 5). Dạng 2.1.4 Số hạng không chứa x (số hạng độc lập) (Trang 8). Dạng 2.2 Khai triển của nhiều biểu thức (Trang 11). Dạng 2.2.1 Dạng ${\left( {{a_1} + {a_2} + \ldots {a_k}} \right)^n}$ (Trang 11). Dạng 2.2.2 Tổng ${\left( {{a_1} + {b_1}} \right)^n} + {\left( {{a_2} + {b_2}} \right)^m} + \ldots + {\left( {{a_k} + {b_k}} \right)^h}$ (Trang 12). Dạng 2.2.3 Tích ${\left( {{a_1} + \ldots + {a_n}} \right)^m}.{\left( {{b_1} + \ldots + {b_n}} \right)^l}$ (Trang 12). Dạng 2.2.4 Dạng kết hợp tích và tổng (Trang 13). Dạng 3. Ứng dụng nhị thức Newton để giải toán (Trang 13). [ads] Phần B . LỜI GIẢI THAM KHẢO Dạng 1. Tiếp cận với khai triển nhị thức Newton (Trang 14). Dạng 2. Tìm hệ số, số hạng trong khai triển nhị thức Newton (Trang 16). Dạng 2.1 Khai triển của 1 biểu thức (Trang 16). Dạng 2.1.1 Bài toán tìm hệ số của số hạng (Trang 16). Dạng 2.1.2 Bài toán tìm số hạng thứ k (Trang 18). Dạng 2.1.3 Bài toán tìm hệ số, số hạng trong khai triển nhị thức có thêm điều kiện n (Trang 20). Dạng 2.1.4 Số hạng không chứa x (số hạng độc lập) (Trang 27). Dạng 2.2 Khai triển của nhiều biểu thức (Trang 31). Dạng 2.2.1 Dạng ${\left( {{a_1} + {a_2} + \ldots {a_k}} \right)^n}$ (Trang 31). Dạng 2.2.2 Tổng ${\left( {{a_1} + {b_1}} \right)^n} + {\left( {{a_2} + {b_2}} \right)^m} + \ldots + {\left( {{a_k} + {b_k}} \right)^h}$ (Trang 33). Dạng 2.2.3 Tích ${\left( {{a_1} + \ldots + {a_n}} \right)^m}.{\left( {{b_1} + \ldots + {b_n}} \right)^l}$ (Trang 35). Dạng 2.2.4 Dạng kết hợp tích và tổng . (Trang 35). Dạng 3. Ứng dụng nhị thức Newton để giải toán (Trang 36). Xem thêm : Các dạng toán quy tắc đếm, hoán vị, chỉnh hợp, tổ hợp thường gặp
Các dạng toán quy tắc đếm, hoán vị, chỉnh hợp, tổ hợp thường gặp
Tài liệu gồm 56 trang được tổng hợp và biên soạn bởi thầy Nguyễn Bảo Vương, tuyển tập 36 câu hỏi và bài tập trắc nghiệm quy tắc cộng và quy tắc nhân, 227 câu hỏi và bài tập trắc nghiệm hoán vị, chỉnh hợp và tổ hợp, có đáp án và lời giải chi tiết, các câu hỏi và bài tập trong tài liệu này được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán. Khái quát nội dung tài liệu các dạng toán quy tắc đếm, hoán vị, chỉnh hợp, tổ hợp thường gặp: PHÉP ĐẾM – QUY TẮC CỘNG VÀ QUY TẮC NHÂN Dạng 1 . Quy tắc cộng. Dạng 2 . Quy tắc nhân. Dạng 3 . Kết hợp quy tắc cộng và quy tắc nhân. [ads] HOÁN VỊ – CHỈNH HỢP – TỔ HỢP Dạng 1 . Bài toán chỉ sử dụng P hoặc C hoặc A. Dạng 1.1 Chỉ sử dụng P. Dạng 1.1.1 Bài toán đếm số. Dạng 1.1.2 Bài toán chọn người (vật). Dạng 1.2 Chỉ sử dụng C. Dạng 1.2.1 Bài toán đếm số (tập số, tập hợp). Dạng 1.2.2 Bài toán chọn người (vật). Dạng 1.2.3 Bài toán liên quan đến hình học. Dạng 1.3 Chỉ sử dụng A. Dạng 1.3.1 Bài toán đếm số (tập số, tập hợp). Dạng 1.3.2 Bài toán chọn người (vật). Dạng 1.3.3 Bài toán liên quan đến hình học. Dạng 2 . Bài toán kết hợp hoán vị, tổ hợp, chỉnh hợp. Dạng 2.1 Bài toán đếm số (tập số). Dạng 2.2 Bài toán chọn người (vật). Dạng 2.3 Bài toán liên quan đến hình học. Dạng 3 . Giải phương trình, bất phương trình, hệ liên quan đến hoán vị, chỉnh hợp, tổ hợp.
Chuyên đề nhị thức Newton (Niu-tơn) - Lê Văn Đoàn
giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 11 tài liệu tự học chủ đề Nhị thức Newton (Niu-tơn), tài liệu gồm 42 trang bao gồm lý thuyết cơ bản cùng một số bài tập thuộc các dạng toán nhị thức Newton thường gặp trong chương trình Đại số và Giải tích 11. Khái quát nội dung tài liệu chuyên đề nhị thức Newton (Niu-tơn) – Lê Văn Đoàn: A. LÝ THUYẾT CẦN NẮM VỮNG 1. Nhị thức Newton . 2. Nhận xét :  + Trong khai triển (a ± n)^n có n + 1 số hạng và các hệ số của các cặp số hạng cách đều số hạng đầu và số hạng cuối thì bằng nhau. + Số hạng tổng quát có dạng và số hạng thứ N thì k = N – 1. + Trong khai triển (a – b)^n thì dấu đan nhau, nghĩa là + rồi – rồi + …. + Số mũ của a giảm dần, số mũ của b tăng dần nhưng tổng số mũ a và b bằng n. 3. Tam giác Pascal : Các hệ số của khai triển: (a + b)^0, (a + b)^1, (a + b)^2 … (a + b)^n có thể xếp thành một tam giác gọi là tam giác PASCAL. [ads] B – CÁC DẠNG TOÁN NHỊ THỨC NEWTON + Dạng toán 1. Tìm hệ số hoặc số hạng trong khai triển nhị thức Newton. + Dạng toán 2. Chứng minh hoặc tính tổng. + Dạng toán 3. Tìm hệ số hoặc số hạng dạng có điều kiện (kết hợp giữa dạng toán 1 và dạng toán 2). Trong mỗi dạng toán đều bao gồm tóm tắt phương pháp giải, một số bài tập mẫu và bài tập tương tự, bài tập về nhà giúp học sinh tự rèn luyện.