Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 Toán 9 năm 2019 - 2020 trường THCS Nguyễn Vĩnh Nghiệp - TP HCM

Thứ Tư ngày 10 tháng 06 năm 2020, trường THCS Nguyễn Vĩnh Nghiệp, quận 12, thành phố Hồ Chí Minh tổ chức kì thi kiểm tra chất lượng môn Toán lớp 9 giai đoạn cuối học kì 2 năm học 2019 – 2020. Đề thi học kì 2 Toán 9 năm 2019 – 2020 trường THCS Nguyễn Vĩnh Nghiệp – TP HCM được biên soạn theo dạng đề tự luận với 07 bài toán, thời gian làm bài thi là 90 phút. Trích dẫn đề thi học kì 2 Toán 9 năm 2019 – 2020 trường THCS Nguyễn Vĩnh Nghiệp – TP HCM : + Một trường THCS tổ chức cho 160 giáo viên và học sinh tham quan ngoại khóa Suối Mơ – Đồng Nai. Vé vào cổng cho mỗi giáo viên là 30.000 đồng, vé vào cổng cho mỗi học sinh là 20.000 đồng. Tổng số tiền mua vé là 3.300.000 đồng. Hỏi có bao nhiêu giáo viên và bao nhiêu học sinh tham gia? [ads] + Một hòn đá rơi xuống một cái hang, khoảng cách rơi xuống được cho bởi công thức: h = 4,9.t^2 (mét), trong đó t là thời gian tính bằng giây. a) Hãy tính độ sâu của hang nếu mất 3 giây để hòn đá chạm đáy. b) Nếu hang sâu 122,5 mét thì phải mất bao lâu để hòn đá chạm tới đáy. + Bác Tư mua được một con heo và một con bò. Sau đó bác bán lại cho người bạn con heo với giá 5.000.000 đồng để làm đám giỗ, bác nói: “Tôi bán cho anh lỗ mất 20% của tôi rồi đấy!”. Một bác hàng xóm mua con bò của bác Tư để làm tiệc đám cưới cho con gái với giá 27.500.000 đồng. Bác Tư thầm nghĩ: “bán con này đi mình lại được 10% so với lúc mua nó”. Hỏi sau khi bán heo và bò bác Tư lời hay lỗ bao nhiêu tiền?

Nguồn: toanmath.com

Đọc Sách

Đề thi HK2 Toán 9 năm 2020 - 2021 phòng GDĐT thành phố Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi HK2 Toán 9 năm học 2020 – 2021 phòng GD&ĐT thành phố Huế, tỉnh Thừa Thiên Huế; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HK2 Toán 9 năm học 2020 – 2021 phòng GD&ĐT thành phố Huế : + Một bồn chứa nước dạng hình trụ có đường kính đáy bằng 1,4m và chiều cao bằng 1,5m. Tính thể tích của bồn chứa nước đó? + Một thửa ruộng hình tam giác có diện tích 180m2. Tính một cạnh của thửa ruộng đó biết nếu tăng cạnh đó thêm 4m và giảm chiều cao tương ứng đi 1m thì diện tích của nó không đổi. + Cho phương trình x2 – 6x + 7. Không giải phương trình, hãy tính tổng và tích của hai nghiệm của phương trình đó.
Đề thi học kì 2 Toán 9 năm 2020 - 2021 trường THCS Phan Huy Chú - Hà Tĩnh
Đề thi học kì 2 Toán 9 năm 2020 – 2021 trường THCS Phan Huy Chú – Hà Tĩnh gồm hai mã đề: mã đề 01 và mã đề 02; đề được biên soạn theo dạng tự luận với 05 bài toán, thời gian làm bài 90 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 9 năm 2020 – 2021 trường THCS Phan Huy Chú – Hà Tĩnh : + Một phòng họp có 270 chỗ ngồi và được chia thành các dãy ghế có số chỗ ngồi bằng nhau. Nếu bớt đi mỗi dãy 3 chỗ ngồi và thêm cho 3 dãy ghế thì số chỗ ngồi trong phòng không thay đổi. Hỏi ban đầu phòng họp được chia thành bao nhiêu dãy ghế. + Cho tam giác MNP nhọn nội tiếp (O). Các đường cao MD, NE, PF của tam giác cắt nhau ở H. a) Chứng minh các tứ giác NFHD và MFDP nội tiếp. b) Đường thẳng MD cắt (O) tại điểm thứ hai K. Chứng minh PN là tia phân giác của góc KPH. c) Chứng minh ON vuông góc với DF. + Cho x, y, z là các số dương thay đổi thỏa mãn điều kiện: 5×2 + 2xyz + 4y2 + 3z2 = 60. Tìm giá trị nhỏ nhất của biểu thức B = x + y + z.
Đề thi cuối kỳ 2 Toán 9 năm 2020 - 2021 phòng GDĐT Hà Đông - Hà Nội
Đề thi cuối kỳ 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Hà Đông – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi cuối kỳ 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Hà Đông – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai ô tô khởi hành cùng một lúc để đi từ A đến B, trên quãng đường AB dài 120km. Biết rằng vận tốc trung bình của ô tô thứ nhất lớn hơn vận tốc trung bình của ô tô thứ hai là 12km/h. Vì vậy, ô tô thứ nhất đã đến B trước ô tô thứ hai là 30 phút. Tính vận tốc trung bình của mỗi ô tô? + Tính thể tích của hình trụ biết rằng diện tích đáy là 50,24 cm2, chiều cao 6cm. + Cho tam giác ABC nhọn, nội tiếp đường tròn (O). Ba đường cao AD, BE, CF của tam giác ABC cùng đi qua trực tâm H. 1) Chứng minh tứ giác BCEF là tứ giác nội tiếp. 2) Chứng minh HA.HD = HB.HE = HC.HF. 3) Đường tròn ngoại tiếp tam giác DEF cắt BC tại điểm thứ hai I. Chứng minh DH là tia phân giác của góc EDF và I là trung điểm của BC.
Đề thi học kì 2 Toán 9 năm 2020 - 2021 phòng GDĐT Gia Lâm - Hà Nội
Đề thi học kì 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Gia Lâm – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào thứ Ba ngày 27 tháng 04 năm 2021. Trích dẫn đề thi học kì 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Gia Lâm – Hà Nội : + Giải toán bằng cách lập phương trình hoặc hệ phương trình: Một cơ sở sản xuất dự định làm 1000 chiếc mặt nạ chống giọt bắn trong một thời gian nhất định. Nhờ tăng năng suất lao động nên mỗi ngày cơ sở đó đã làm thêm được 30 chiếc mặt nạ so với kế hoạch. Vì vậy chẳng những đã làm vượt mức 170 chiếc mặt nạ mà còn hoàn thành công việc sớm hơn dự định một ngày. Hỏi theo kế hoạch, mỗi ngày cơ sở đó dự định sản xuất bao nhiêu chiếc mặt nạ? + Một hình trụ có diện tích toàn phần gấp hai lần diện tích xung quanh. Biết bán kính đáy hình trụ là 6cm. Tính thể tích hình trụ. + Cho Parabol (P): y = x2 và đường thẳng (d): y = (m – 1)x + m + 4 (tham số m). a) Chứng tỏ rằng (d) luôn cắt (P) tại 2 điểm phân biệt với mọi giá trị của m. b) Gọi x1, x2 lần lượt là hoành độ giao điểm của (d) và (P). Tìm giá trị của m để.