Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 9 lần 3 năm 2021 trường THCS Phương Liệt - Hà Nội

  Nhằm chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2021 – 2022 do sở GD&ĐT Hà Nội tổ chức, thứ Bảy ngày 29 tháng 05 năm 2021, trường THCS Phương Liệt, quận Thanh Xuân, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2020 – 2021 lần thứ ba. Đề khảo sát chất lượng Toán 9 lần 3 năm 2021 trường THCS Phương Liệt – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút (không kể thời gian phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát chất lượng Toán 9 lần 3 năm 2021 trường THCS Phương Liệt – Hà Nội : + Cho hàm số y m x 1 3 m 1 có đồ thị là đường thẳng (d). a) Tìm m để đường thẳng (d) đi qua điểm M(1; 4). Với m vừa tìm được, hãy cho biết đường thẳng (d) có song song với đường thẳng y x 1 không? Vì sao? b) Tìm tất cả các giá trị m để đường thẳng (d) tiếp xúc với đường tròn (O; 1) trong đó O là gốc tọa độ. + Cho nửa đường tròn tâm (O), đường kính AB = 2R. Vẽ bán kính OC vuông góc với AB. Lấy điểm K bất kì thuộc cung AC, kẻ KH vuông góc với AB tại H. Tia AC cắt HK tại I, tia BI cắt nửa tròn tại điểm E. 1) Chứng minh tứ giác BHIC nội tiếp. 2) Chứng minh AI.AC = AH. AB và tổng AI.AC + BI.BE không đổi. 3) Chứng minh HE vuông góc với CE và tâm đường tròn ngoại tiếp tam giác CEH nằm trên đường thẳng cố định khi K di động trên cung AC. + Với a, b, c là các số dương thỏa mãn điều kiện abc 3. Tìm giá trị lớn nhất của biểu thức Q a bc b ca c a.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Ba Đình - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 29 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 – 2024 phòng GD&ĐT Ba Đình – Hà Nội : + Giải toán bằng cách lập phương trình hoặc hệ phương trình: Để trang trí cho gian hàng hội chợ xuân, một lớp học dự định gấp 600 con hạc giấy trong một thời gian đã định. Thực tế các bạn nam đã làm vượt mức 18%, các bạn nữ đã làm vượt mức 21%. Vì vậy trong thời gian quy định họ đã hoàn thành vượt mức 120 con hạc giấy. Hỏi số hạc giấy mỗi đội nam, nữ của lớp phải làm theo kế hoạch? + Một lọ hoa hình trụ có đường kính đáy là 22 cm, chiều cao 45 cm. Người ta phủ một lớp men bóng mặt ngoài lọ hoa (không kể đáy). Tính diện tích cần phủ men (lấy pi = 3,14). + Cho tam giác ABC có ba góc nhọn AB AC nội tiếp đường tròn O và các đường cao AD BE CF của tam giác cắt nhau tại điểm H. 1) Chứng minh tứ giác BCEF là tứ giác nội tiếp. 2) Kẻ đường kính AK của đường tròn O. Chứng minh BAD KAC. 3) Gọi M và N lần lượt là trung điểm của các đoạn thẳng BC và EF. Hai đường thẳng AN và OM cắt nhau tại điểm I. Chứng minh tam giác ANF đồng dạng với tam giác AMC và IB là tiếp tuyến của O.
Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Tây Hồ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND quận Tây Hồ, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 27 tháng 03 năm 2024.
Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Sóc Sơn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Sóc Sơn, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 27 tháng 03 năm 2024. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 – 2024 phòng GD&ĐT Sóc Sơn – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Mẹ An vào cửa hàng mua một chai dầu gội đầu và một chai sữa rửa mặt với tổng số tiền theo giá niêm yết là 360 nghìn đồng. Tuy nhiên, hôm nay cửa hàng có khuyến mại: chai dầu gội đầu giảm 10% còn chai sữa rửa mặt giảm 5% so với giá niêm yết. Do đó mẹ An thanh toán cho cửa hàng khi mua hai sản phẩm trên là 332 nghìn đồng. Tính giá tiền niêm yết tại cửa hàng của chai dầu gội đầu và chai sữa rửa mặt? + Một hộp sữa đặc dạng hình trụ có bán kính đáy là 3,5 cm; chiều cao 8 cm. Hỏi bên trong hộp chứa bao nhiêu mi-li-lít sữa? (Coi thể tích phần vỏ hộp không đáng kể và lấy pi = 3,14). + Cho tam giác ABC có ba góc nhọn và nội tiếp đường tròn (O). Kẻ đường cao AH của tam giác ABC và đường kính AK của (O). Gọi E là chân đường vuông góc kẻ từ điểm C đến đường thẳng AK. 1) Chứng minh tứ giác AHEC là tứ giác nội tiếp. 2) Chứng minh: HE // BK và AB.AE = AC.AH. 3) Lấy M là trung điểm của đoạn thẳng BC. Gọi F là chân đường vuông góc kẻ từ điểm B đến đường thẳng AK. Chứng minh rằng M là tâm đường tròn ngoại tiếp HEF.
Đề khảo sát Toán 9 năm 2023 - 2024 trường THCS Minh Khai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát năng lực học sinh môn Toán 9 năm học 2023 – 2024 trường THCS Minh Khai, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 22 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm mã đề A – B. Trích dẫn Đề khảo sát Toán 9 năm 2023 – 2024 trường THCS Minh Khai – Hà Nội : + Trong mặt phẳng tọa độ Oxy cho đường thẳng d y ax b. Tìm a b để đường thẳng d có hệ số góc bằng 3 và đi qua điểm M(-1;2). + Cho phương trình 2 x mx m 2 20 (m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm 1 2 x (với 1 2 x) thỏa mãn hệ thức 2 x m 34. + Cho đường tròn tâm (O) đường kính AB, lấy điểm H thuộc đường kính AB, qua điểm H kẻ dây CD vuông góc với đường kính AB, lấy điểm E thuộc cung nhỏ BD (E khác B và D); AE cắt CD tại điểm F. 1. Chứng minh: Tứ giác BEFH nội tiếp. 2. Chứng minh: 2 CD AH HB 4. 3. Đường thẳng đi qua H song song với CE, cắt đường thẳng AE và BE lần lượt tại I và K. Gọi G là giao điểm của DE và IK, M là trung điểm của đoạn thẳng CE. Chứng minh: DI AE và ba đường thẳng CI, MG, BE đồng quy.