Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG lớp 7 môn Toán lần 3 năm 2022 2023 trường THCS Trường Sơn Thanh Hóa

Nội dung Đề khảo sát HSG lớp 7 môn Toán lần 3 năm 2022 2023 trường THCS Trường Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề khảo sát HSG lớp 7 môn Toán lần 3 năm 2022-2023 trường THCS Trường Sơn Thanh Hóa Đề khảo sát HSG lớp 7 môn Toán lần 3 năm 2022-2023 trường THCS Trường Sơn Thanh Hóa Xin chào quý thầy cô và các em học sinh lớp 7! Sau đây là đề khảo sát chất lượng học sinh giỏi môn Toán lớp 7 lần 3 năm học 2022-2023 của trường THCS Trường Sơn, huyện Nông Cống, tỉnh Thanh Hóa. Đề thi này bao gồm cả đáp án và hướng dẫn chấm điểm để các em có thể tự kiểm tra và nâng cao kiến thức của mình. Dưới đây là một số câu hỏi trong đề khảo sát: 1. Tìm số tự nhiên có ba chữ số, biết rằng số đó là bội của 18 và các chữ số của nó tỉ lệ theo 1:2:3. Tìm tất cả các số tự nhiên a, b sao cho: 2016a1b = 2015b2015. 2. Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao của CD và BE, K là giao của AB và DC. a) Chứng minh rằng: ∆ADC = ∆ABE. b) Chứng minh rằng ∆AMN đều. c) Chứng minh rằng IA là phân giác của góc DIE. 3. Cho 2016 số nguyên dương a1, a2, a3, … , a2016 thỏa mãn 1232016 = 111...300aaa. Chứng minh trong 2016 số đã cho tồn tại ít nhất hai số bằng nhau. File WORD chứa đầy đủ đề thi và đáp án dành cho quý thầy cô có thể tải về để sử dụng.

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 7 năm 2020 - 2021 phòng GDĐT thành phố Bắc Giang
Ngày 12 tháng 03 năm 2021, phòng Giáo dục và Đào tạo thành phố Bắc Giang tổ chức kỳ thi chọn học sinh giỏi văn hóa cấp thành phố môn Toán lớp 7 năm học 2020 – 2021. Đề thi HSG Toán 7 năm 2020 – 2021 phòng GD&ĐT thành phố Bắc Giang gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút.
Đề thi HSG huyện Toán 7 năm 2020 - 2021 phòng GDĐT Lục Ngạn - Bắc Giang
Thứ Năm ngày 18 tháng 03 năm 2021, phòng Giáo dục và Đào tạo huyện Lục Ngạn, tỉnh Bắc Giang tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán lớp 7 năm học 2020 – 2021. Đề thi HSG huyện Toán 7 năm 2020 – 2021 phòng GD&ĐT Lục Ngạn – Bắc Giang (bảng B) gồm 01 trang với 05 bài toán dạng tự luận, thang điểm 20, thời gian làm bài 120 phút.
Đề thi HSG Toán 7 năm 2020 - 2021 phòng GDĐT thành phố Sầm Sơn - Thanh Hóa
Đề thi HSG Toán 7 năm 2020 – 2021 phòng GD&ĐT thành phố Sầm Sơn – Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 7 năm 2020 – 2021 phòng GD&ĐT thành phố Sầm Sơn – Thanh Hóa : + Số M được chia thành ba phần tỉ lệ với nhau như 0,25 : 0,375 : 0,1(3). Tìm số M biết rằng tổng các bình phương của ba phần đó bằng 4564. + Tìm các giá trị nguyên của x để biểu thức N = 2 3 4 1 2 x x x có giá trị nguyên. + Cho tam giác ABC có 0 ABC ACB 30. Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Lấy điểm E thuộc cạnh CD sao cho 0 DBE = 30. Gọi P là điểm trên cạnh BC sao cho BP = BD. Vẽ PQ vuông góc với CD. a) Chứng minh rằng tam giác AEB là tam giác vuông. b) Chứng minh rằng 2 2 2 1 1 1 BE BC BD. c) Chứng minh rằng EB = EQ. d) So sánh hai đoạn thẳng AE và AQ.
Đề thi HSG Toán 7 năm 2019 - 2020 phòng GDĐT Lục Nam - Bắc Giang
Thứ Hai ngày 01 tháng 06 năm 2020, phòng Giáo dục và Đào tạo Lục Nam, tỉnh Bắc Giang tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán lớp 7 năm học 2019 – 2020. Đề thi HSG Toán 7 năm 2019 – 2020 phòng GD&ĐT Lục Nam – Bắc Giang gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi HSG Toán 7 năm 2019 – 2020 phòng GD&ĐT Lục Nam – Bắc Giang : + Một cửa hàng có ba cuộn vải với tổng chiều dài ba cuộn vải là 186 m. Giá tiền mỗi mét vải của ba cuộn là như nhau. Sau khi bán được một ngày, cửa hàng còn lại 2/3 cuộn vải thứ nhất; 1/3 cuộn vải thứ hai; 3/5 cuộn vải thứ ba. Số tiền bán được của ba cuộn tỉ lệ với 2 : 3 : 2. Tính số vải đã bán được của mỗi cuộn vải trong ngày đó. + Tìm các số nguyên dương x, y, z sao cho: x + y + z = xyz. + Biết n là số nguyên không chia hết cho 2 và 3. Chứng minh 4n^2 + 3n + 5 chia hết cho 6.