Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG lớp 7 môn Toán đợt 1 năm 2022 2023 phòng GD ĐT Ninh Giang Hải Dương

Nội dung Đề khảo sát HSG lớp 7 môn Toán đợt 1 năm 2022 2023 phòng GD ĐT Ninh Giang Hải Dương Bản PDF - Nội dung bài viết Đề khảo sát HSG lớp 7 môn Toán đợt 1 năm 2022-2023 Đề khảo sát HSG lớp 7 môn Toán đợt 1 năm 2022-2023 Chào mừng quý thầy cô và các em học sinh lớp 7! Đây là Đề khảo sát năng lực học sinh giỏi môn Toán lớp 7 đợt 1 năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Ninh Giang, tỉnh Hải Dương. Kỳ thi sẽ diễn ra vào ngày 05 tháng 11 năm 2022. Trích dẫn một số câu hỏi từ Đề khảo sát HSG Toán lớp 7 đợt 1 năm 2022-2023: Cho p là số nguyên tố lớn hơn 3 thỏa mãn 10p + 1 cũng là số nguyên tố. Chứng minh rằng 5p + 1 chia hết cho 6. Tìm tất cả các cặp số nguyên x, y sao cho xy - 2x + y + 1 = 0. Cho góc vuông xOy, trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA > OB. Qua A kẻ đường thẳng vuông góc với Ox, qua B kẻ đường thẳng vuông góc với Oy. Hai đường thẳng này cắt nhau ở C. a) Chứng minh AC vuông góc BC b) Kẻ phân giác của góc OAC cắt BC tại D, kẻ phân giác góc OBC cắt OA tại E. Chứng minh AD // BE. Hy vọng các em sẽ tự tin và thành công trong kỳ thi sắp tới. Chúc quý thầy cô và các em có một kỳ thi suôn sẻ và đạt kết quả tốt. Cảm ơn quý vị đã quan tâm và hỗ trợ cho sự phát triển của học sinh giỏi!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 7 năm 2016 - 2017 phòng GDĐT Gia Viễn - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi Toán 7 năm 2016 – 2017 phòng GD&ĐT Gia Viễn – Ninh Bình.
Đề học sinh giỏi huyện Toán 7 năm 2016 - 2017 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2016 – 2017 phòng GD&ĐT Quốc Oai – Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2016 – 2017 phòng GD&ĐT Quốc Oai – Hà Nội : + Trong vòng bán kết giải bóng đá của trường THCS Phù Đổng có 4 đội thi đấu, gọi A là tập hợp các cầu thủ; B là tập hợp các số áo thi đấu. Quy tắc mỗi cầu thủ ứng với số áo của họ có phải là một hàm số không? Vì sao? + Cho ABC có ba góc nhọn, trung tuyến AM. Trên nửa mặt phẳng bờ AB chứa điểm C, vẽ đoạn thẳng AE vuông góc và bằng AB. Trên nửa mặt phẳng bờ AC chứa điểm B, vẽ đoạn thẳng AD vuông góc và bằng AC. a/ Chứng minh: BD = CE. b/ Trên tia đối của tia MA lấy N sao cho MN = MA. Chứng minh: ADE = CAN. c/ Gọi I là giao điểm của DE và AM. Chứng minh. + Tìm các số tự nhiên x, y thỏa mãn: 2×2 + 3y2 = 77.
Đề học sinh giỏi huyện Toán 7 năm 2016 - 2017 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2016 – 2017 phòng GD&ĐT Kim Thành – Hải Dương; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2016 – 2017 phòng GD&ĐT Kim Thành – Hải Dương : + Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao của CD và BE, K là giao của AB và DC. a) Chứng minh rằng: ADC = ABE. b) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh rằng AMN đều. c) Chứng minh rằng IA là phân giác của góc DIE. + Chứng minh rằng với n nguyên dương thì 3n+2 – 2n+2 + 3n – 2n chia hết cho 10. + Tìm các cặp số nguyên (x;y) thỏa mãn: x + 2y = 3xy + 3.
Đề học sinh giỏi Toán 7 năm 2015 - 2016 phòng GDĐT Sơn Dương - Tuyên Quang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi Toán 7 năm 2015 – 2016 phòng GD&ĐT Sơn Dương – Tuyên Quang; đề thi có đáp số + lời giải + thang điểm. Trích dẫn đề học sinh giỏi Toán 7 năm 2015 – 2016 phòng GD&ĐT Sơn Dương – Tuyên Quang : + Ba lớp 7A, 7B, 7C cùng mua một số gói tăm từ thiện, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5,6,7 nhưng sau đó chia theo tỉ lệ 4,5,6 nên có một lớp nhận nhiều hơn dự định 4 gói. Tính tổng số gói tăm mà ba lớp đã mua. + Cho tam giác ABC có AB < AC. Trên tia đối của tia CA lấy điểm D sao cho CD = AB. Gọi P, Q là trung điểm của AD, BC và I là giao điểm các đường vuông góc với AD và BC tại P và Q. a) Chứng minh ∆AIB = ∆DIC. b) Chứng minh AI là tia phân giác của góc BAC. c) Kẻ IE vuông góc với AB, chứng minh AD AE. + Cho a, b, c là ba số thực khác 0, thoả mãn. Hãy tính giá trị của biểu thức.