Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Hải Phòng

Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo Hải Phòng tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn Hải Phòng. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Hải Phòng, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Hải Phòng : + Cho một thửa ruộng hình chữ nhật, biết rằng nếu chiều rộng tăng thêm 2m, chiều dài giảm đi 2m thì diện tích thửa ruộng đó tăng thêm 30m2 và nếu chiều rộng giảm đi 2m, chiều dài tăng thêm 5m thì diện tích thửa ruộng giảm đi 20m2. Tính diện tích thửa ruộng trên. [ads] + Một hình trụ có diện tích xung quanh 140π (cm2) và chiều cao là h = 7 cm. Tính thể tích của hình trụ đó. + Tìm các giá trị của tham số m để đồ thị hai hàm số y = (m + 4)x + 11 và y = x + m^2 + 2 cắt nhau tại một điểm trên trục tung.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán 2018 - 2019 trường PTNK - TP. HCM (không chuyên)
Đề tuyển sinh lớp 10 môn Toán 2018 – 2019 trường PTNK – TP. HCM (không chuyên) được biên soạn và tổ chức thi ngày 26/05/2018 nhằm giúp tuyển chọn các em học sinh khối 10 đạt chỉ tiêu về năng lực vào trường Phổ Thông Năng Khiếu, Đại học Quốc gia TP. HCM để chuẩn bị cho năm học 2018 – 2019, đề thi gồm 1 trang với 5 bài toán tự luận, thí sinh làm bài trong 120 phút, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh lớp 10 môn Toán 2018 – 2019 trường PTNK – TP. HCM : + Cho phương trình x^2 – x + 3m – 11 = 0 (1). a) Với giá trị nào của m thì phương trình (1) có nghiệm kép. Tìm nghiệm kép đó. b) Tìm m để phương trình (1) có hai nghiệm phân biệt x1, x2 sao cho 2017×1 + 2018×2 = 2019. [ads] + Tứ giác ABCD nội tiếp đường tròn (T) tâm O, bán kính R; góc CAD = 45 độ, AC vuông góc với BD và cắt BD tại I, AD > BC. Dựng CK vuông góc với AD (K ∈ AD), CK cắt BD tại H và cắt (T) tại E (E ≠ C). a) Tính số đo góc COD. Chứng minh các điểm C, I, K, D cùng thuộc một đường tròn và AC = BD. b) Chứng minh A là tâm đường tròn ngoại tiếp tam giác BHE. Tính IK theo R. c) IK cắt AB tại F. Chứng minh O là trực tâm tam giác AIK và CK.CB = CF.CD.
Đề tuyển sinh vào lớp 10 THPT chuyên 2018 - 2019 sở GD và ĐT Hưng Yên
Đề tuyển sinh vào lớp 10 THPT chuyên 2018 – 2019 sở GD và ĐT Hưng Yên được biên soạn và tổ chức thi nhằm giúp tuyển chọn các em học sinh khá, giỏi vào học tại các trường THPT chuyên tại tỉnh Hưng Yên trong năm học 2018 – 2019, đề gồm 6 bài toán tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh vào lớp 10 THPT chuyên 2018 – 2019 sở Hưng Yên : + Quảng đường AB dài 120 km. Một ô tô chạy từ A đến B với vận tốc xác định. Khi từ B trở về A, ô tô chạy với vận tốc nhỏ hơn vận tốc lúc đi từ A đến B là 10 km/h. Tính vận tốc lúc về của ô tô, biết thời gian về nhiều hơn thời gian đi 24 phút. [ads] + Tìm m để đường thẳng y = x + m^2 + 2 và đường thẳng y = (m – 2)x + 11 cắt nhau tại một điểm trên trục tung. + Tìm m để phương trình x^4 + 5x^2 + 6 – m = 0 (m là tham số) có đúng hai nghiệm.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2018 - 2019 sở GD và ĐT Bình Dương
Đề tuyển sinh lớp 10 THPT môn Toán năm 2018 – 2019 sở GD và ĐT Bình Dương được biên soạn theo hình thức tự luận với 5 bài toán, thời gian làm bài 120 phút, kỳ thi được tổ chức nhằm giúp các trường THPT trên địa bàn tỉnh Bình Dương đánh giá được năng lực học sinh, để tuyển sinh học sinh lớp 10 cho năm học mới theo tiêu chí của mỗi trường, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh lớp 10 môn Toán 2018 – 2019 sở Bình Dương : + Một người dự định đi xe máy từ tỉnh A đến tỉnh B cách nhau 90km trong một thời gian đã định. Sau khi đi được 1 giờ người đó nghỉ 9 phút. Do đó, để đến tỉnh B đúng hẹn, người ấy phải tăng vận tốc thêm 4km/h. Tính vận tốc lúc đầu của người đó. [ads] + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O) có bán kính R= 3cm. Các tiếp tuyến với (O) tại B và C cắt nhau tại D. 1) Chứng minh tứ giác OBDC nội tiếp đường tròn. 2) Gọi M là giao điểm của BC và OD. Biết OD = 5cm. Tính diện tích tam giác BCD. 3) Kẻ đường thẳng d đi qua D và song song với đường tiếp tuyến với (O) tại A, d cắt các đường thẳng AB, AC lần lượt tại P, Q. Chứng minh: AB.AP = AQ.AC. 4) Chứng minh: góc PAD bằng góc MAC.
Bộ đề ôn thi tuyển sinh vào lớp 10 THPT và THPT chuyên môn Toán
Để góp phần định hướng cho việc dạy – học ở các trường nhất là việc ôn tập, rèn luyện kĩ năng cho học sinh sát với thực tiễn giáo dục của tỉnh nhà nhằm nâng cao chất lượng các kì thi tuyển sinh, Sở GD và ĐT Hà Tĩnh phát hành Bộ tài liệu ôn thi tuyển sinh vào lớp 10 THPT và THPT chuyên môn Toán. Tài liệu được viết theo hình thức Bộ đề ôn thi, gồm hai phần: một phần ôn thi vào lớp 10 THPT, một phần ôn thi vào lớp 10 THPT chuyên dựa trên cấu trúc đề thi của Sở. Mỗi đề thi đều có lời giải tóm tắt và kèm theo một số lời bình. Bộ tài liệu ôn thi này do các thầy, cô giáo là lãnh đạo, chuyên viên phòng Giáo dục Trung học – Sở GD và ĐT, cốt cán chuyên môn các bộ môn của Sở; các thầy, cô giáo là Giáo viên giỏi tỉnh biên soạn.