Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm học thêm chuyên đề hình vuông, hình chữ nhật, hình thang

Nội dung Tài liệu dạy thêm học thêm chuyên đề hình vuông, hình chữ nhật, hình thang Bản PDF - Nội dung bài viết Tài liệu dạy thêm học thêm chuyên đề hình vuông, hình chữ nhật, hình thangPhần A - HÌNH VUÔNGPhần B - HÌNH CHỮ NHẬTPhần C - HÌNH THANG Tài liệu dạy thêm học thêm chuyên đề hình vuông, hình chữ nhật, hình thang Tài liệu này được tổng hợp trong 17 trang, bao gồm tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề về hình vuông, hình chữ nhật, hình thang. Nó được thiết kế để hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy và học thêm môn Toán. Phần A - HÌNH VUÔNG Phần I - Tóm tắt lý thuyết: Dạng 1: Nhận biết hình vuông - Dựa vào định nghĩa hình vuông, nhận biết được hình nào là hình vuông. Dạng 2: Vẽ hình vuông - Vẽ hình vuông dựa vào định nghĩa. Dạng 3: Diện tích hình vuông - Từ công thức tính diện tích hình vuông, tính diện tích hình vuông khi biết các yếu tố hoặc tìm yếu tố nào đó khi biết diện tích hình vuông. Dạng 4: Bài toán liên quan đến hình vuông. Phần B - HÌNH CHỮ NHẬT Phần I - Tóm tắt lý thuyết: Dạng 1: Nhận biết hình chữ nhật - Dựa vào định nghĩa hình chữ nhật, nhận biết được hình nào là hình chữ nhật. Dạng 2: Vẽ hình chữ nhật - Vẽ hình chữ nhật trên giấy kẻ ô vuông với các số đo cho trước. Dạng 3: Diện tích hình chữ nhật - Từ công thức tính diện tích hình chữ nhật, tính diện tích hình chữ nhật khi biết các yếu tố hoặc tìm yếu tố nào đó khi biết diện tích hình chữ nhật. Dạng 4: Bài toán liên quan đến hình chữ nhật. Phần C - HÌNH THANG Phần I - Tóm tắt lý thuyết: Dạng 1: Nhận biết hình thang - Dựa vào định nghĩa hình thang, nhận biết được hình nào là hình thang. Dạng 2: Vẽ hình thang - Vẽ hình thang trên giấy kẻ ô vuông với các số đo cho trước. Dạng 3: Diện tích hình thang - Từ công thức tính diện tích hình thang, tính diện tích hình thang khi biết các yếu tố hoặc tìm yếu tố nào đó khi biết diện tích hình thang. Dạng 4: Bài toán liên quan đến hình thang - Từ công thức tính diện tích và chu vi hình thang, tính diện tích hình thang khi biết các yếu tố hoặc tìm yếu tố nào đó khi biết diện tích hình thang. File WORD (dành cho quý thầy, cô): [link]

Nguồn: sytu.vn

Đọc Sách

Chuyên đề phân số bằng nhau
Tài liệu gồm 11 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề phân số bằng nhau, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Hiểu được khái niệm hai phân số bằng nhau. Kĩ năng: + Nhận dạng được hai phân số bằng nhau, không bằng nhau. + Lập được các cặp phân số bằng nhau từ một đẳng thức tích. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 . Nhận biết các cặp phân số bằng nhau. Dạng 2 . Tìm số chưa biết trong đẳng thức của hai phân số. Dạng 3 . Viết các phân số bằng nhau từ đẳng thức đã cho.
Chuyên đề mở rộng khái niệm phân số
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề mở rộng khái niệm phân số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Thấy được sự khác nhau và giống nhau giữa khái niệm phân số đã học ở tiểu học và khái niệm phân số ở lớp 6. Kĩ năng: + Viết được các phân số mà tử số và mẫu số là các số nguyên. + Biết cách dùng phân số để diễn đạt một nội dung thực tế. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Viết các phân số. “a phần b” hoặc a : b được viết thành a/b (trong đó b khác 0). Biểu diễn phân số của một hình cho trước: + Mẫu cho biết số phần bằng nhau được chia ra. + Tử cho biết số phần được lấy (tô màu). Dạng 2 : Viết các số nguyên kẹp giữa hai phân số có tử là bội của mẫu. + Bước 1. Tính giá trị của các phân số đã cho dưới dạng số nguyên. + Bước 2. Tìm tất cả các số nguyên “kẹp giữa” hai số nguyên đó. Dạng 3 : Điều kiện để phân số tồn tại. Điều kiện để một biểu thức có giá trị là một số nguyên. Phân số a/b tồn tại khi a b và b khác 0. Phân số a b có giá trị là một số nguyên khi a b.
Chuyên đề bội và ước của một số nguyên
Tài liệu gồm 14 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề bội và ước của một số nguyên, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 2: Số nguyên. Mục tiêu : Kiến thức: + Nhận biết được quan hệ chia hết, khái niệm ước và bội trong tập hợp các số nguyên. Kĩ năng: + Xác định được bội và ước của các số nguyên cho trước. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 . Tìm bội (ước) của một số nguyên. Bội của một số nguyên a có dạng a m m. Ước của một số nguyên: + Nếu số nguyên có giá trị tuyệt đối nhỏ thì nhẩm xem nó chia hết cho những số nào rồi từ đó tìm các ước cả ước dương và ước âm. + Nếu số nguyên có giá trị tuyệt đối lớn thì phân tích số đó ra thừa số nguyên tố để tìm ước. Dạng 2 . Tìm x thỏa mãn đẳng thức. Dạng 3 . Tìm x thỏa mãn điều kiện chia hết.
Chuyên đề nhân hai số nguyên, tính chất của phép nhân
Tài liệu gồm 17 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề nhân hai số nguyên, tính chất của phép nhân, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 2: Số nguyên. Mục tiêu : Kiến thức: + Hiểu được quy tắc nhân hai số nguyên. Kĩ năng: + Thực hiện được phép nhân hai số nguyên. + Vận dụng được các tính chất giao hoán, kết hợp, phân phối của phép nhân đối với phép cộng trong tính toán. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 . Thực hiện phép tính. Quy tắc nhân hai số nguyên khác dấu: Số âm × Số dương = Số âm. + Muốn nhân hai số nguyên khác dấu, ta nhân hai giá trị tuyệt đối của chúng rồi đặt dấu “-” trước kết quả. + Với mọi số nguyên a: a.0 = 0.a = 0. Quy tắc nhân hai số nguyên cùng dấu: + Nhân hai số nguyên dương: Thực hiện như phép nhân thông thường. + Nhân hai số nguyên âm: Muốn nhân hai số nguyên âm, ta nhân hai giá trị tuyệt đối của chúng. Dạng 2 . Vận dụng tính chất của phép nhân. + Tính chất giao hoán. + Tính chất kết hợp. + Nhân với số 1. + Tính chất phân phối của phép nhân đối với phép cộng, phép trừ.