Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phép cộng phân số, tính chất cơ bản của phép cộng phân số

Nội dung Chuyên đề phép cộng phân số, tính chất cơ bản của phép cộng phân số Bản PDF - Nội dung bài viết Chuyên đề phép cộng phân sốI. LÍ THUYẾT TRỌNG TÂMII. CÁC DẠNG BÀI TẬP Chuyên đề phép cộng phân số Tài liệu này bao gồm 17 trang với lý thuyết chính, các dạng toán và bài tập thực hành về phép cộng phân số và tính chất cơ bản của nó. Được thiết kế để hỗ trợ học sinh lớp 6 trong việc học chương trình Toán lớp 6, chủ đề Số học chương 3: Phân số. Mục tiêu của tài liệu này là giúp học sinh: - Hiểu rõ các quy tắc thực hiện phép toán cộng với phân số cùng mẫu và không cùng mẫu. - Nắm vững các tính chất của phép cộng phân số. Kỹ năng học sinh sẽ đạt được thông qua tài liệu này bao gồm: - Thực hiện phép cộng với phân số cùng mẫu và không cùng mẫu. - Rút gọn và quy đồng phân số. Tài liệu bao gồm các phần sau: I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Thực hiện phép cộng các phân số. - Cộng hai phân số cùng mẫu: Cộng các tử và giữ nguyên mẫu. - Cộng hai phân số không cùng mẫu: + Bước 1: Rút gọn phân số nếu cần. + Bước 2: Quy đồng mẫu số các phân số. + Bước 3: Thực hiện phép cộng với hai phân số cùng mẫu. Dạng 2: So sánh tổng với một số. Đánh giá xem các số hạng của tổng có lớn hơn hoặc nhỏ hơn một số nào đó hay không. Đếm số hạng của tổng để đưa ra kết luận. Dạng 3: Tìm số chưa biết trong một đẳng thức. Tài liệu này sẽ giúp học sinh hiểu rõ hơn về phép cộng phân số và các tính chất cơ bản của nó, giúp họ phát triển kỹ năng tính toán và logic trong việc giải quyết các bài tập liên quan đến phép cộng phân số.

Nguồn: sytu.vn

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm hình chữ nhật, hình thoi, hình bình hành, hình thang cân
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình chữ nhật, hình thoi, hình bình hành, hình thang cân, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Hình chữ nhật. Hình chữ nhật ABCD có: + Bốn đỉnh: A, B, C, D. + Hai cạnh đối diện song song: AB song song với CD, BC song song với AD. + Hai cạnh đối diện bằng nhau: AD = BC; AB = DC. + Bốn góc đỉnh A, B, C, D bằng nhau và bằng góc vuông. + Hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường: OA = OC = OB = OD. 2. Hình thoi. Hình thoi ABCD có: + Bốn đỉnh: A, B, C, D. + Hai cạnh đối diện song song: AB song song với CD, BC song song với AD. + Bốn cạnh bằng nhau: AD = BC = AB = DC. + Hai đường chéo vuông góc với nhau: AC, BD vuông góc với nhau. 3. Hình bình hành. Hình bình hành ABCD có: + Bốn đỉnh: A, B, C, D. + Hai cạnh đối diện song song: AB song song với CD, BC song song với AD. + Hai cạnh đối diện bằng nhau: AD = BC; AB = DC. + Hai cặp góc đối diện bằng nhau: góc đỉnh A bằng góc đỉnh C, góc đỉnh B bằng góc đỉnh D. + Hai đường chéo cắt nhau tại trung điểm mỗi đường: OA = OC = OB = OD. 4. Hình thang cân. Hình thang cân ABCD có: + Bốn đỉnh: A, B, C, D. + Hai cạnh đáy song song: AB song song với CD. + Hai cạnh bên bằng nhau: AD = BC. + Hai góc kề 1 đáy bằng nhau: góc đỉnh A bằng góc đỉnh C, góc đỉnh B bằng góc đỉnh D. + Hai đường chéo bằng nhau: AC = BD. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm hình tam giác đều, hình vuông, hình lục giác đều
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình tam giác đều, hình vuông, hình lục giác đều, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Hình vuông. Hình vuông ABCD có: + Bốn đỉnh A B C D. + Bốn cạnh bằng nhau AB BC CD DA. + Bốn góc bằng nhau và bằng góc vuông. + Hai đường chéo là AC và BD. 2. Tam giác đều. Tam giác đều ABC có: + Ba đỉnh A B C. + Ba cạnh bằng nhau AB BC CA. + Ba góc đỉnh A B C bằng nhau. 3. Lục giác đều. Hình ABCDEF gọi là hình lục giác đều có: + Sáu đỉnh A, B, C, D, E, F. + Sáu cạnh bằng nhau AB BC CD DE EF FA. + Sáu góc đỉnh A, B, C, D, E, F bằng nhau. Ba đường chéo chính là AD, BE, CF. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm phép chia hết, ước và bội của một số nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép chia hết, ước và bội của một số nguyên, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Phép chia hết. Với a b b 0 nếu có số nguyên q sao cho a bq thì ta có phép chia hết a b q và ta nói a chia hết cho b, kí hiệu là a b. Thương của hai số nguyên trong phép chia hết là một số dương nếu hai số đó cùng dấu và là một số âm khi hai số đó khác dấu. 2. Ước và bội. Nếu a b thì ta gọi a là một bội của b và b là một ước của a a b b. Nếu a là một bội của b thì -a cũng là một bội của b. Nếu b là một ước của a thì -b cũng là một ước của a. Chú ý: Số 0 là bội của mọi số nguyên khác 0. Số 0 không phải là ước của bất kì số nguyên nào. Các số 1 và -1 là ước của mọi số nguyên. Nếu d vừa là ước của a, vừa là ước của b thì ta gọi d là một ước chung của a và b a b d d. Trong tập hợp các số nguyên cũng có các tính chất về chia hết tương tự như trong tập số tự nhiên. 3. Cách chia hai số nguyên (trường hợp chia hết). a. Nếu số bị chia bằng 0 và số chia khác 0 thì thương bằng 0. b. Nếu chia hai số nguyên khác 0 thì: Bước 1: Chia phần tự nhiên của hai số. Bước 2: Đặt dấu “+” trước kết quả nếu hai số cùng dấu. Đặt dấu “-” trước kết quả nếu hai số trái dấu. 4. Cách tìm ước và bội. Muốn tìm tất cả các ước của một số nguyên a, ta lấy các ước dương của a cùng với các số đối của chúng. Muốn tìm các bội của một số nguyên, ta nhân số đó với 0; 1; 2; 3; …. B. BÀI TẬP TRẮC NGHIỆM Dạng 1: Tìm bội và ước của một nguyên. Để tìm bội của một số nguyên, ta nhân số đó với 0; 1; 2; 3; …. Để tìm ước của một số nguyên dương, ta phân tích số đó ra thừa số nguyên tố rồi tìm các ước tự nhiên và số đối của các ước đó. Để tìm ước của một số nguyên âm, ta phân tích phần tự nhiên của số đó (hoặc số đối của số đó) ra thừa số nguyên tố rồi tìm các ước tự nhiên và số đối của các ước đó. Dạng 2: Xét tính chia hết của một tổng, hiệu và tích cho một số. Cho a b c c Nếu a c a b c Nếu a c b c a b c a b c Nếu a c b. Chú ý : a c b c thì không thế kết luận được về tính chia hết của a b a b cho c. Dạng 3: Tìm số nguyên x thỏa mãn điều kiện chia hết. Phương pháp: Cho a b c c Nếu a b c b c Nếu a c b c a b c Nếu a c a b. Chú ý: a c và a b c thì không thế kết luận được về tính chia hết của b cho c.
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép nhân số nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép nhân số nguyên, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Lý thuyết. 1. Nhân hai số nguyên khác dấu. + Bước 1: Bỏ dấu “-” trước số nguyên âm, giữ số nguyên còn lại. + Bước 2: Lấy tích hai số nguyên dương nhận được ở bước 1. + Bước 3: Đặt dấu “-” trước kết quả nhận được ở bước 2 ta có tích cần tìm. 2. Nhân hai số nguyên cùng dấu âm. – Quy tắc: + Bước 1: Bỏ dấu “-” trước cả hai số nguyên âm. + Bước 2: Lấy tích hai số nguyên dương nhận được ở bước 1 ta có tích cần tìm. 3. Nhân hai số nguyên cùng dấu dương. Khi nhân hai số nguyên dương ta nhân như nhân hai số tự nhiên. 4. Quy tắc dấu khi thực hiện phép nhân, chia số nguyên. Cách nhận biết dấu của kết quả khi thực hiện phép nhân hai số nguyên. 5. Tính chất của phép nhân số nguyên. Phép nhân số nguyên có các tính chất: 1. Giao hoán. 2. Kết hợp. 3. Phân phối của phép nhân với phép cộng, trừ. 2. Các dạng toán thường gặp. a) Dạng 1: Thực hiện phép nhân số nguyên. + Thực hiện theo quy tắc nhân hai số nguyên cùng dấu và khác dấu: Với hai số nguyên dương a b ta có: a b a b ab. + Chú ý quy tắc dấu khi nhân hai số nguyên. + Quan sát một số biểu thức có thể tính nhanh khi thực hiện phép nhân theo các tính chất: Giao hoán; Kết hợp; Phân phối của phép nhân với phép cộng, trừ. b) Dạng 2: Tìm x. + Xét xem: Điều cần tìm (thường được gọi là x) hoặc biểu thức liên quan đóng vai trò là gì trong phép toán (số hạng, số trừ, số bị trừ, thừa số, số chia, số bị chia) (Số hạng) = (Tổng) – (Số hạng đã biết) (Số trừ) = (Số bị trừ – Hiệu) (Số bị trừ) = (Hiệu) + (Số trừ) (Thừa số) = (Tích) : (Thừa số đã biết) (Số chia) = (Số bị chia) :(Thương) (Số bị chia) = (Thương). (Số chia). + Thực hiện theo hướng dẫn trên tìm các biểu thức liên quan đến x trước (nếu có) sau đó mới xét tìm x. Chú ý sử dụng nhiều trường hợp (Số bị chia) = (Thương) . (Số chia). c) Dạng 3: Toán có lời văn (Toán thực tế). + Đọc kĩ đề bài tóm tắt bài toán: Xem bài toán cho biết gì và yêu cầu tìm gì? + Biểu thị số nguyên âm trong bài (nếu có). Lưu ý số nguyên âm thường biểu thị nhiệt độ âm, độ cao dưới mực nước biển, số tiền lỗ, số điểm bị trừ, năm trước công nguyên. + Dùng kiến thức thực tế xác định đúng phép nhân và thực hiện. Ví dụ: Quãng đường đi được = Vận tốc . Thời gian. Tiền công = Số tiền của một sản phẩm . Số sản phẩm. Số điểm = Số câu trả lời . Số điểm của một câu. B. BÀI TẬP