Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử lớp 10 môn Toán THPTQG 2019 trường THPT Yên Phong 1 Bắc Ninh lần 1

Nội dung Đề thi thử lớp 10 môn Toán THPTQG 2019 trường THPT Yên Phong 1 Bắc Ninh lần 1 Bản PDF Đề thi thử Toán lớp 10 THPTQG 2019 trường THPT Yên Phong 1 – Bắc Ninh lần 1 mã đề 178 gồm 05 trang, đề được biên soạn theo hình thức trắc nghiệm 50 câu, học sinh làm bài thi trong 90 phút, đề nhằm giúp học sinh sớm làm quen với kỳ thi THPT Quốc gia môn Toán, tạo điều kiện để các em rèn luyện, đề thi có đáp án. Trích dẫn đề thi thử Toán lớp 10 THPTQG 2019 trường THPT Yên Phong 1 – Bắc Ninh lần 1 : + Hai con tàu đang ở cùng một vĩ tuyến và cách nhau 5 hải lý. Đồng thời cả hai tàu cùng khởi hành, một chạy về hướng Nam với vận tốc 6 hải lý/giờ, còn tàu kia chạy về vị trí hiện tại của tàu thứ nhất với vận tốc 7 hải lý/giờ. Khoảng cách nhỏ nhất giữa hai tàu gần với số nào nhất? [ads] + Câu nào sau đây đúng? A. y = ax^2 + b đồng biến khi a > 0 và nghịch biến khi b < 0. B. Hàm số y = ax^2 + b đồng biến khi a > 0 và nghịch biến khi a < 0. C. Hàm số y = ax^2 + b đồng biến khi b > 0 và nghịch biến khi b < 0. D. Với mọi b, hàm số y = ax^2 + b nghịch biến khi a ≠ 0. + Cho tam giác ABC. Quỹ tích các điểm M thỏa mãn hệ thức vec-tơ MA.MB = MA.MC là: A. Đường thẳng qua A vuông góc với BC. B. Đường trung trực của đoạn thẳng BC. C. Đường thẳng qua A vuông góc với CA. D. Đường tròn. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi khảo sát lần 3 Toán 10 năm 2018 - 2019 trường Nguyễn Đăng Đạo - Bắc Ninh
Đề thi khảo sát lần 3 Toán 10 năm 2018 – 2019 trường Nguyễn Đăng Đạo – Bắc Ninh có mã đề 110 gồm 04 trang, đề được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 2 năm học 2018 – 2019. Trích dẫn đề thi khảo sát lần 3 Toán 10 năm 2018 – 2019 trường Nguyễn Đăng Đạo – Bắc Ninh : + Trong mặt phẳng Oxy, cho hình chữ nhật ABCD với AD = 2AB. Gọi M, N lần lượt là trung điểm của AD, BC. Điểm K(5;-1) đối xứng với M qua N. Phương trình đường thẳng chứa cạnh AC là: 2x + y – 3 = 0. Biết A(a;b) (b > 0). Tính tổng a + b. [ads] + Cho hai hàm số f(x) = |x + 2| – |x – 2|, g(x) = -|x|. Khẳng định nào sau đây đúng? A. f(x) là hàm số chẵn, g(x) là hàm số lẻ. B. f(x) là hàm số lẻ, g(x) là hàm số chẵn. C. f(x) là hàm số lẻ, g(x) là hàm số lẻ. D. f(x) là hàm số chẵn, g(x) là hàm số chẵn. + Cho hàm số f(x) = x^2 – 2(m + 1/m)x + m. Đặt a, b lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của f(x) trên đoạn [-1;1]. Gọi S là tập hợp tất cả các giá trị của tham số m sao cho: b – a = 8. Tính tổng của các phần tử thuộc S.
Đề khảo sát Toán 10 lần 3 năm 2018 - 2019 trường Lương Tài 2 - Bắc Ninh
Ngày 17 tháng 03 năm 2019, trường THPT Lương Tài số 2, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra khảo sát chất lượng lần 3 môn Toán 10 năm học 2018 – 2019. Đề khảo sát Toán 10 lần 3 năm 2018 – 2019 trường Lương Tài 2 – Bắc Ninh có mã đề 132 gồm 04 trang với 50 câu hỏi và bài tập dạng trắc nghiệm, thời gian học sinh làm bài là 90 phút, đề thi có đáp án. Trích dẫn đề khảo sát Toán 10 lần 3 năm 2018 – 2019 trường Lương Tài 2 – Bắc Ninh : + Cho phương trình x^2 – x – 1 = 0? Chọn khẳng định ĐÚNG? A. Phương trình có 2 nghiệm dương phân biệt. B. Phương trình vô nghiệm. C. Phương trình có 2 nghiệm trái dấu. D. Phương trình có nghiệm kép. [ads] + Cho tam giác ABC có G là trọng tâm, I, J, K lần lượt là trung điểm GA, GB, GC. Tìm tập hợp điểm M thỏa mãn: |4MA + MB + MC| = 2|AB – AC|? A. Đường tròn tâm G, bán kính BC. B. Đường tròn tâm J, bán kính 2/3BC. C. Đường tròn tâm K, bán kính 1/6BC. D. Đường tròn tâm I, bán kính 1/3BC. + Cho bất phương trình √(2x – 4) ≤ 2. Chọn khẳng định đúng? A. Tập nghiệm của bất phương trình là: (-∞; 4). B. Tập nghiệm của bất phương trình là: (-∞; 4]. C. Tập nghiệm của bất phương trình là: (2; 4]. D. Tập nghiệm của bất phương trình là: [2; 4].
Đề thi KSCL Toán 10 lần 2 năm 2018 2019 trường Yên Lạc 2 Vĩnh Phúc
Vừa qua, trường THPT Yên Lạc 2, tỉnh Vĩnh Phúc đã tổ chức kỳ thi khảo sát chất lượng Toán 10 lần thứ hai năm học 2018 – 2019, kỳ thi nhằm giúp nhà trường và giáo viên nắm rõ chất lượng học tập môn Toán của học sinh khối 10 trong giai đoạn giữa học kỳ 2 năm học 2018 – 2019. Đề thi KSCL Toán 10 lần 2 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc mã đề 132 được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, học sinh làm bài trong 90 phút, đề thi có đáp án. [ads] Trích dẫn đề thi KSCL Toán 10 lần 2 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc : + Để sản xuất 100 sản phẩm thì Mai và Lan cùng làm hết 72 giờ, Lan và Chi cùng làm hết 63 giờ, còn Mai và Chi cùng làm hết 60 giờ. Trong buổi tổng kết sắp tới trưởng cơ sở sản xuất muốn thưởng cho một người sản xuất năng suất nhất. Hỏi ai sẽ được thưởng? + Mệnh đề nào sau đây là mệnh đề sai ? A. Điểm G là trọng tâm của tam giác ABC thì GA + GB + GC = 0. B. Tứ giác ABCD là hình bình hành thì AC = AB + AD. C. Với ba điểm bất kì O, A, B thì AB = OA – OB. D. Gọi I là trung điểm của đoạn thẳng AB với điểm M bất kì thì 2MI = MA + MB. + Cho hai hàm số f(x) = -x^4 + 8x^2 + 2019 và g(x) = √(1 – x^2). Khẳng định nào sau đây là đúng? A. Hàm số f(x) và g(x) không chẵn không lẻ. B. Hàm số f(x) chẵn, hàm số g(x) không chẵn không lẻ. C. Hàm số f(x) chẵn, hàm số g(x) lẻ. D. Hàm số f(x) và g(x) đều chẵn.
Đề khảo sát Toán 10 lần 2 năm 2018 2019 trường THPT Lê Xoay Vĩnh Phúc
Tuần qua, trường THPT Lê Xoay, tỉnh Vĩnh Phúc đã tiến hành tổ chức kỳ thi khảo sát chất lượng môn Toán 10 lần 2 trong giai đoạn giữa học kỳ 2 năm học 2018 – 2019. Đề khảo sát Toán 10 lần 2 năm 2018 – 2019 trường THPT Lê Xoay – Vĩnh Phúc có mã đề 125, đề gồm 06 trang được biên soạn theo dạng trắc nghiệm với 50 câu hỏi và bài toán, học sinh làm bài trong 90 phút, kỳ thi nhằm đánh giá chất lượng môn Toán thường xuyên đối với học sinh khối 10 theo từng giai đoạn để thúc đẩy nâng cao chất lượng học tập. Trích dẫn đề khảo sát Toán 10 lần 2 năm 2018 – 2019 trường THPT Lê Xoay – Vĩnh Phúc : + Cho tam giác ABC không vuông với độ dài các đường cao kẻ từ đỉnh B, C lần lượt là hb, hc, độ dài đường trung tuyến kẻ từ đỉnh A là ma, biết hb = 8, hc = 6, ma = 5. Tính cos A. [ads] + Cho ba số dương a, b, c có tổng bằng 1. Giá trị lớn nhất của biểu thức P = a + √ab + (abc)^1/3 là? + Cho tam giác ABC có BC = a, CA = b, AB = c. Mệnh đề nào sau đây là đúng? A. Nếu b^2 + c^2 – a^2 < 0 thì góc A nhọn. B. Nếu b^2 + c^2 – a^2 < 0 thì góc A vuông. C. Nếu b^2 + c^2 – a^2 > 0 thì góc A tù. D. Nếu b^2 + c^2 – a^2 > 0 thì góc A nhọn.