Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Lý Thường Kiệt Bắc Ninh

Nội dung Đề kiểm tra lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Lý Thường Kiệt Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra chất lượng lần 1 môn Toán lớp 10 năm học 2023 – 2024 trường THPT Lý Thường Kiệt, tỉnh Bắc Ninh; đề thi gồm 05 trang, hình thức 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút; đề thi có đáp án mã đề 132 – 209. Trích dẫn Đề kiểm tra lần 1 Toán lớp 10 năm 2023 – 2024 trường THPT Lý Thường Kiệt – Bắc Ninh : + Bác An đầu tư 1,2 tỉ đồng vào ba loại trái phiếu: trái phiếu chính phủ với lãi suất 7% một năm, trái phiếu ngân hàng với lãi suất 8% một năm và trái phiếu doanh nghiệp rủi ro cao với lãi suất 12% một năm. Vì lí do giảm thuế, bác An muốn số tiền đầu tư trái phiếu chính phủ gấp 3 lần số tiền đầu tư trái phiếu ngân hàng. Hơn nữa, để giảm thiểu rủi ro, bác An đầu tư không quá 200 triệu đồng cho trái phiếu doanh nghiệp. Bác An nên đầu tư mỗi loại trái phiếu bao nhiêu tiền để lợi nhuận thu được sau một năm là lớn nhất? A. 750 triệu cho trái phiếu chính phủ, 250 triệu cho trái phiếu ngân hàng và 200 triệu cho trái phiếu doanh nghiệp. B. 250 triệu cho trái phiếu chính phủ,750 triệu cho trái phiếu ngân hàng và 200 triệu cho trái phiếu doanh nghiệp. C. 200 triệu cho trái phiếu chính phủ, 250 triệu cho trái phiếu ngân hàng và 750 triệu cho trái phiếu doanh nghiệp. D. 750 triệu cho trái phiếu chính phủ, 200 triệu cho trái phiếu ngân hàng và 750 triệu cho trái phiếu doanh nghiệp. + Một gia đình cần ít nhất 900 đơn vị protein và 400 đơn vị lipit trong thức ăn mỗi ngày. Mỗi kilôgam thịt bò chứa 800 đơn vị protein và 200 đơn vị lipit. Mỗi kilôgam thịt lợn chứa 600 đơn vị protein và 400 đơn vị lipit. Biết rằng gia đình này chỉ mua nhiều nhất 1,6 kg thịt bò và 1,1 kg thịt lợn; giá tiền 1 kg thịt bò là 250 nghìn đồng; 1 kg thịt lợn là 160 nghìn đồng. Giả sử gia đình đó mua x kilôgam thịt bò và y kilôgam thịt lợn. số kilôgam lần lượt thịt bò, thịt lợn mà gia đình cần mua để chi phí là ít nhất là? + Lớp 12A có 10 học sinh biết chơi bóng đá, 7 học sinh biết chơi bóng chuyền, 6 học sinh biết chơi bóng rổ, có 4 học sinh biết chơi cả bóng đá, bóng chuyền; có 3 học sinh biết chơi cả bóng đá, bóng rổ; 2 học sinh biết chơi cả bóng chuyền, bóng rổ; 1 học sinh biết chơi cả ba môn thể thao này. Hỏi số học sinh biết chơi ít nhất 1 môn là? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic Toán 10 năm 2018 - 2019 trường THPT Kim Liên - Hà Nội
giới thiệu đến thầy, cô và các em học sinh khối 10 nội dung đề thi Olympic Toán 10 năm 2018 – 2019 trường THPT Kim Liên – Hà Nội, đề thi gồm 01 trang với 05 bài toán tự luận, học sinh làm bài trong 150 phút (không tính khoảng thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Trích dẫn đề thi Olympic Toán 10 năm 2018 – 2019 trường THPT Kim Liên – Hà Nội : + Một cầu treo có dây truyền đỡ là Parabol ACB như hình vẽ. Đầu và cuối của dây được gắn vào các điểm A, B trên mỗi trục AA′ và BB′ với độ cao 30 m. Chiều dài đoạn A’B′ trên nền cầu bằng 200 m. Độ cao ngắn nhất của dây truyền trên cầu là CC’ = 5 m. Gọi Q′, P′, H′, C’, I′, J′, K′ là các điểm chia đoạn A’B′ thành các phần bằng nhau. Các thanh thẳng đứng nối nền cầu với đáy dây truyền: QQ′, PP′, HH′, CC’, II′, JJ′, KK′ gọi là các dây cáp treo. Tính tổng độ dài của các dây cáp treo? [ads] + Cho tam giác ABC và một điểm M bất kỳ, BC = a, CA = b, AB = c. a) Chứng minh rằng (b^2 – c^2)cosA = a(c.cosC – b.cosB). b) Tìm tập hợp các điểm M sao cho MB^2 + MC^2 = MA^2. + Trong mặt phẳng với hệ tọa độ Oxy, cho A(3;1), B(-1;2). a) Tìm tọa độ điểm N trên trục hoành Ox sao cho khoảng cách AN nhỏ nhất. b) Cho điểm M di động trên đường thẳng d: y = x. Đường thẳng MA cắt trục hoành tại P và đường thẳng MB cắt trục tung tại Q. Chứng minh đường thẳng PQ luôn đi qua một điểm cố định.
Đề thi HSG Toán 10 năm 2018 - 2019 trường THPT Nam Tiền Hải - Thái Bình
Đề thi HSG Toán 10 năm 2018 – 2019 trường THPT Nam Tiền Hải – Thái Bình được biên soạn theo hình thức tự luận, đề gồm 01 trang với 05 bài toán, học sinh có 180 phút đẻ làm bài, kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2019. Trích dẫn đề thi HSG Toán 10 năm 2018 – 2019 trường THPT Nam Tiền Hải – Thái Bình : + Trong mặt phẳng toạ độ Oxy. 1. Viết phương trình đường cao AD, phân giác trong CE của tam giác ABC biết A(4;-1), B(1;5), C(-4;-5). 2. Cho B(0;1), C(3;0). Đường phân giác trong góc BAC của tam giác ABC cắt Oy tại M(0;-7/3) và chia tam giác ABC thành hai phần có tỉ số diện tích bằng 10/11 (phần chứa điểm B có diện tích nhỏ hơn diện tích phần chứa điểm C). Gọi A(a;b) và a < 0, tính T = a^2 + b^2. + Chứng minh rằng: a.sinA + b.sinB + c.sinC = 2(ma^2 + mb^2 + mc^2)/3R với mọi tam giác ABC (a = BC, b = AC, c = AB; ma, mb, mc lần lượt là độ dài đường trung tuyến hạ từ A, B, C; R bán kính đường tròn ngoại tiếp tam giác ABC).
Đề thi học sinh giỏi Toán 10 năm 2018 - 2019 trường Đan Phượng - Hà Nội
giới thiệu đến bạn đọc nội dung đề thi học sinh giỏi Toán 10 năm 2018 – 2019 trường Đan Phượng – Hà Nội, kỳ thi được diễn ra nhằm giúp giáo viên bộ môn và nhà trường tuyển chọn những em học sinh khối lớp 10 giỏi môn Toán để bổ sung vào đội tuyển học sinh giỏi Toán 10 của nhà trường, những em được chọn sẽ được tuyên dương, khen thưởng trước toàn trường để làm tấm gương học tập cho các học sinh khác, các em sẽ được tiếp tục bồi dưỡng, rèn luyện để tham gia kỳ thi học sinh giỏi Toán cấp thành phố. Đề thi học sinh giỏi Toán 10 năm 2018 – 2019 trường Đan Phượng – Hà Nội được biên soạn theo hình thức tự luận nhằm đánh giá chính xác khả năng tư duy logic của các em, đề gồm 5 bài toán, thang điểm 20, thời gian làm bài thi môn Toán là 120 phút, đề thi có lời giải chi tiết và thang điểm. [ads] Trích dẫn đề thi học sinh giỏi Toán 10 năm 2018 – 2019 trường Đan Phượng – Hà Nội : + Trong mặt phẳng tọa độ Oxy cho hình thang ABCD với hai đáy là AB và CD. Biết diện tích hình thang bằng 14 (đơn vị diện tích), đỉnh A(1;1) và trung điểm cạnh BC là H(-1/2;0). Viết phương trình tổng quát của đường thẳng AB biết đỉnh D có hoành độ dương và D nằm trên đường thẳng d: 5x – y + 1 = 0. + Cho parabol (P): y = 2x^2 + 6x – 1. Tìm giá trị của k để đường thẳng Δ: y = (k + 6)x + 1 cắt parabol (P) tại hai điểm phân biệt M, N sao cho trung điểm của đoạn thẳng MN nằm trên đường thẳng d: y = -2x + 3/2. + Cho tam giác ABC là tam giác đều có độ dài cạnh bằng a. Trên các cạnh BC, CA, AB lần lượt lấy các điểm N, M, P sao cho BN = a/3, CM = 2a/3, AP = x (0 < x < a). Tìm giá trị của x theo a để đường thẳng AN vuông góc với đường thẳng PM.