Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2020 sở GD ĐT Quảng Ninh

Nội dung Đề thi chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2020 sở GD ĐT Quảng Ninh Bản PDF Đề thi chọn học sinh giỏi tỉnh Toán lớp 12 năm 2020 sở GD&ĐT Quảng Ninh (Bảng A và Bảng B) được biên soạn theo dạng đề tự luận, có lời giải chi tiết và thang điểm; kỳ thi được diễn ra vào ngày 01 tháng 12 năm 2020. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán lớp 12 năm 2020 sở GD&ĐT Quảng Ninh : + Lớp 12B lập Kế hoạch tiết kiệm 5 triệu đồng tiền tiêu vặt trong 5 tháng để ủng hộ đồng bào bị thiên tai như sau: Vào các ngày mùng 1 của các tháng 1, 2, 3, 4, 5 của năm 2021 mỗi học sinh trong lớp tiết kiệm số tiền giống nhau là A đồng và nộp lại cho lớp trưởng để lớp trưởng gửi vào ngân hàng theo hình thức lãi kép (lãi nhập vào gốc để tính lãi ở tháng tiếp theo) với lãi suất r (r > 0) trên một tháng (lãi suất không đổi trong suốt thời gian gửi). Hãy xây dựng công thức tính A theo r biết rằng lớp có 40 học sinh và ngày rút tiền ủng hộ là ngày 01/6/2021 (chỉ rút duy nhất một lần). + Ở một thành phố biển Q có một hòn đảo, trên đảo có điểm O cố định. Người ta cần xây dựng các con đường nối từ hai ga xe X và Y trên đất liền tới một điểm T cách điểm O một khoảng r. Cho biết với ϕ là góc nhọn thỏa mãn. Dự kiến đường đi từ X tới T là đường thẳng hai làn xe, còn đường đi từ Y tới T là đường thẳng bốn làn xe. Chi phí xây dựng cho một ki-lô-mét đường hai làn xe và bốn làn xe lần lượt là 1 triệu USD và 2 triệu USD. Tìm vị trí điểm T sao cho tổng chi phí xây dựng cả hai con đường là nhỏ nhất và tính chi phí này. + Cho đa giác đều (H) có 24 đỉnh. Gọi S là tập hợp các tam giác có 3 đỉnh lấy từ 24 đỉnh của (H). Chọn ngẫu nhiên một tam giác từ S, tính xác suất để tam giác chọn được không phải là tam giác vuông. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 - 2023 sở GDĐT Bình Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán bậc THPT cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Dương; kỳ thi được diễn ra vào thứ Năm ngày 20 tháng 10 năm 2022. Trích dẫn Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 – 2023 sở GD&ĐT Bình Dương : + Cho dãy số (an) được xác định bởi a1 = a > 1và a_n+1 a) Tìm giới hạn của dãy số (an). b) Với n thuộc N*, đặt Sn = ak. Hãy tìm giới hạn của dãy số (Sn). + Trong mặt phẳng, cho 2023 điểm sao cho không có 3 điểm nào thẳng hàng. Hỏi: a) Có ít nhất bao nhiêu tam giác không cân được tạo thành. b) Chứng minh rằng có thể chọn ra một tập con gồm 45 điểm sao cho trong đó không có 3 điểm nào tạo thành một tam giác đều. + Cho tam giác ABC nhọn nội tiếp đường tròn (O) có B, C cố định và A thay đổi trên (O). D là trung điểm BC. BE, CF là các đường cao của tam giác ABC. Hai đường tròn (DBF) và (DCE) cắt nhau tại điểm thứ hai là K. a) Chứng minh rằng K luôn thuộc đường tròn cố định. b) Lấy T trên (O) sao cho KT vuông góc BC và A, T khác phía với BC. Các đường thẳng AB, BT cắt lại đường tròn (AKT) lần lượt tại M, N. Gọi I là trung điểm MN. Chứng minh rằng đường tròn (ATI) luôn đi qua điểm cố định.
Đề học sinh giỏi Toán 12 cấp tỉnh năm 2022 - 2023 sở GDĐT Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 THPT cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 19 tháng 10 năm 2022. Trích dẫn Đề học sinh giỏi Toán 12 cấp tỉnh năm 2022 – 2023 sở GD&ĐT Hải Dương : + Một nhóm 15 học sinh gồm 6 học sinh lớp A, 5 học sinh lớp B, 4 học sinh lớp C. Lấy ngẫu nhiên 7 học sinh trong nhóm trên. Tính xác suất để 7 học sinh lấy ra có đủ cả 3 lớp và số học sinh lớp B bằng số học sinh lớp C. + Cho tam giác ABC vuông cân tại A có trọng tâm G; gọi E, H lần lượt là trung điểm của AB, BC. D là điểm đối xứng với H qua A, I là giao điểm của đường thẳng AB và đường thẳng CD. Biết D(-1;-1), đường thẳng IG có phương trình 6 3 7 0 x y và điểm E có hoành độ bằng 1. Tìm tọa độ các đỉnh của tam giác ABC. + Cho hình lập phương 1 1 1 1 ABCD ABC D có cạnh bằng a. Đường thẳng d đi qua D1 và tâm O của hình vuông BCC B1 1. Đoạn thẳng MN có trung điểm K thuộc đường thẳng d, biết M thuộc mặt phẳng (BCC B1 1), N thuộc mặt phẳng (ABCD). Tìm giá trị nhỏ nhất của độ dài đoạn thẳng MN.
Đề học sinh giỏi cấp tỉnh Toán 12 năm 2022 - 2023 sở GDĐT Bình Thuận
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Thuận. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 12 năm 2022 – 2023 sở GD&ĐT Bình Thuận : + Cho tam giác ABC nội tiếp đường tròn (O) với AB AC. Trung tuyến xuất phát từ đỉnh A và đường phân giác trong của góc A cắt BC lần lượt tại M và N. Đường thẳng qua N và vuông góc với AN cắt đường thẳng AB, AM lần lượt tại P và Q; đường thẳng qua P và vuông góc với AB cắt đường thẳng AN tại R. Chứng minh QR vuông góc với BC. + Tìm hiểu kết quả học tập ở một lớp học người ta thấy: Hơn 7 10 số học sinh đạt điểm giỏi ở môn Toán cũng đồng thời đạt điểm giỏi ở môn Ngữ văn. Hơn 7 10 số học sinh đạt điểm giỏi ở môn Ngữ văn cũng đồng thời đạt điểm giỏi ở môn Lịch sử. Hơn 7 10 số học sinh đạt điểm giỏi ở môn Lịch sử cũng đồng thời đạt điểm giỏi ở môn Tiếng Anh. Hơn 7 10 số học sinh đạt điểm giỏi ở môn Tiếng Anh cũng đồng thời đạt điểm giỏi ở môn Toán. Chứng minh trong lớp có ít nhất một học sinh đạt điểm giỏi ở cả bốn môn Toán, Ngữ văn, Lịch sử, Tiếng Anh. + Cho hàm số 3 2 f x m x m x x 1 1 3 6 5 và 2 0 max 1 f x f với m là tham số thực. Tìm giá trị nhỏ nhất của hàm số f x trên đoạn −2 0.
Đề chọn đội tuyển HSG môn Toán năm 2022 - 2023 sở GDĐT Đắk Nông
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển học sinh giỏi môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Nông. Trích dẫn Đề chọn đội tuyển HSG môn Toán năm 2022 – 2023 sở GD&ĐT Đắk Nông : + Cho phương trình ax3 + 27×2 + 12x + 2022 = 0 có 3 nghiệm thực phân biệt. Hỏi phương trình sau có bao nhiêu nghiệm thực: 4 (ax3 + 27×2 + 12x + 2022)(3ax + 27) = (3ax2 + 54x + 12)2 với a khác 0. + Cho hai đường tròn (O1) và (O2) tiếp xúc trong tại M (đường tròn (O2) nằm trong). Hai điểm P và Q thuộc đường tròn (O2), qua P kẻ tiếp tuyến với (O2) cắt (O1) tại B và D, qua Q kẻ tiếp tuyến với (O2) cắt (O1) tại A và C. Chứng minh rằng tâm đường tròn nội tiếp các tam giác ACD, BCD nằm trên PQ. + Cho tam giác ABC, trên trung tuyến AD lấy điểm I cố định. Đường thẳng d đi qua I lần lượt cắt cạnh AB, AC tại M, N. Tìm vị trí của đường thẳng d để diện tích tam giác AMN đạt giá trị nhỏ nhất.