Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp cụm lớp 7 môn Toán năm 2022 2023 trường THCS Cành Nàng Thanh Hóa

Nội dung Đề HSG cấp cụm lớp 7 môn Toán năm 2022 2023 trường THCS Cành Nàng Thanh Hóa Bản PDF - Nội dung bài viết Đề HSG cấp cụm lớp 7 môn Toán năm 2022-2023 trường THCS Cành Nàng Thanh Hóa Đề HSG cấp cụm lớp 7 môn Toán năm 2022-2023 trường THCS Cành Nàng Thanh Hóa Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 7 đề khảo sát chất lượng cấp cụm môn Toán lớp 7 năm học 2022-2023 của trường THCS Cành Nàng, Thanh Hóa. Đề thi bao gồm đáp án và lời giải chi tiết, được tổ chức vào ngày 29 tháng 01 năm 2023. Dưới đây là một số câu hỏi mẫu từ đề HSG cấp cụm Toán lớp 7 năm 2022-2023 trường THCS Cành Nàng, Thanh Hóa: Tìm tất cả các số tự nhiên a, b sao cho: 2a + 7 = |b - 5| + b - 5. Tìm các giá trị nguyên của x để biểu thức C=$\frac{22}{3x}+4x$ có giá trị lớn nhất. Cho ∆ABC có góc A nhỏ hơn 90 độ. Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là ∆ABM và ∆ACN. Chứng minh rằng: MC = BN. Chứng minh rằng: BN vuông góc với CM. Kẻ AH vuông góc BC (H thuộc BC). Chứng minh AH đi qua trung điểm của MN. Đề HSG cấp cụm lớp 7 môn Toán năm 2022-2023 tại trường THCS Cành Nàng, Thanh Hóa không chỉ giúp học sinh ôn tập kiến thức một cách cụ thể mà còn khuyến khích sự sáng tạo, tư duy logic và kỹ năng giải quyết vấn đề của học sinh. Chúc các em có kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 7 năm 2014 - 2015 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 7 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình : + Tìm các số a, b, c không âm thỏa mãn đồng thời ba điều kiện: a + 3c = 2014; a + 2b = 2015; tổng (a + b + c) đạt giá trị lớn nhất. + Trên bảng viết 99 số: 1, 2, 3, 4 … 99. Cứ mỗi lần người ta xóa đi hai số bất kì rồi lại viết giá trị của tổng hai số vừa xóa vào bảng. Cuối cùng trên bảng chỉ còn lại một số, giả sử đó là số k. Hãy tìm k và chứng tỏ k không phải là số chính phương. + Cho m, n, p là các số nguyên dương thỏa mãn: m2 = n2 + p2. Chứng minh rằng: tích m.n.p chia hết cho 15.
Đề học sinh giỏi huyện Toán 7 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 7 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho n là số tự nhiên có hai chữ số. Tìm n biết n 4 và 2n đều là các số chính phương. + Cho xAy = 600 có tia phân giác Az. Từ điểm B trên Ax kẻ BH vuông góc với Ay tại H, kẻ BK vuông góc với Az và Bt song song với Ay, Bt cắt Az tại C. Từ C kẻ CM vuông góc với Ay tại M. 1) Chứng minh K là trung điểm của AC. 2) Chứng minh KMC là tam giác đều. 3) Cho BK = 2cm. Tính các cạnh của AKM. + Đa thức f(x) = ax2 + bx + c có a, b, c là các số nguyên và a 0. Biết với mọi giá trị nguyên của x thì f(x) luôn chia hết cho 23. Chứng minh rằng các số a, b, c đều chia hết cho 23.
Đề học sinh giỏi huyện Toán 7 năm 2009 - 2010 phòng GDĐT Phú Thiện - Gia Lai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2009 – 2010 phòng GD&ĐT Phú Thiện – Gia Lai; đề thi có đáp số + lời giải + thang điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2009 – 2010 phòng GD&ĐT Phú Thiện – Gia Lai : + Cho tam giác ABC vuông tại A; K là trung điểm của BC. Trên tia đối của tia KA lấy D sao cho KD = KA. a. Chứng minh: CD // AB. b. Gọi H là trung điểm của AC; BH cắt AD tại M; DH cắt BC tại N. Chứng minh rằng: ABH = CDH. c. Chứng minh: HMN cân. + Chứng minh rằng số có dạng abcabc luôn chia hết cho 11. + Cho tỉ lệ thức d c b a. Chứng minh rằng: (a + 2c)(b + d) = (a + c)(b + 2d).