Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề ôn thi cuối học kì 2 (HK2) lớp 12 môn Toán năm 2022 2023 trường chuyên Thăng Long Lâm Đồng

Nội dung Đề ôn thi cuối học kì 2 (HK2) lớp 12 môn Toán năm 2022 2023 trường chuyên Thăng Long Lâm Đồng Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề ôn tập kiểm tra cuối học kỳ 2 môn Toán lớp 12 năm học 2022 – 2023 trường THPT chuyên Thăng Long, thành phố Đà Lạt, tỉnh Lâm Đồng; đề thi hình thức trắc nghiệm 100% với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, không kể thời gian phát đề; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề ôn thi cuối kỳ 2 Toán lớp 12 năm 2022 – 2023 trường chuyên Thăng Long – Lâm Đồng : + Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(1; 0; 3), B(2;−1; 1),C(−1; 3;−4), D(2; 6; 0) tạo thành một hình tứ diện. Gọi M, N lần lượt là trung điểm các đoạn thẳng AB, CD. Tìm tọa độ trung điểm G của đoạn MN. + Một người chạy trong thời gian 1 giờ, vận tốc v (km/h) phụ thuộc thời gian t (h) có đồ thị làm một phần của đường parabol với đỉnh I 1 2 8 và trục đối xứng song song với trục tung như hình vẽ. Tính quãng đường S người đó chạy được trong khoảng thời gian 45 phút, kể từ khi bắt đầu chạy. + Trong không gian với hệ tọa độ Oxyz, cho m, n là hai số thực dương thỏa mãn m + 2n = 1. Gọi A, B, C lần lượt là giao điểm của mặt phẳng (P): mx + ny + mnz − mn = 0 với các trục tọa độ Ox, Oy, Oz. Khi mặt cầu ngoại tiếp tứ diện OABC có bán kính nhỏ nhất thì 2m + n có giá trị bằng?

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Trưng Vương TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Trưng Vương TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán lớp 12 năm học 2019 – 2020 trường THPT Trưng Vương, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2019 – 2020 trường THPT Trưng Vương – TP HCM : + Trong không gian Oxyz, cho hai điểm A M và đường thẳng. Gọi u a b là một vectơ chỉ phương của trình đường thẳng đi qua M vuông góc với đường thẳng d sao cho khoảng cách từ A đến đường thẳng là nhỏ nhất. Tính 2 2 a b. + Trên mặt phẳng toạ độ Oxy, gọi A B C lần lượt là điểm biểu diễn các số phức z iz và z iz. Biết tam giác ABC có diện tích bằng 8. Tính môđun của số phức z. + Trong không gian Oxyz, mặt cầu S có tâm nằm trên mặt phẳng và tiếp xúc với mặt phẳng Oxy tại điểm H(-1;1;0). Tính bán kính R của mặt cầu.
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Trường Chinh TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Trường Chinh TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán lớp 12 năm học 2019 – 2020 trường THPT Trường Chinh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM : + Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x = 1 và x = 3 , biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x thì được thiết diện là một hình thoi có độ dài hai đường chéo là 6x và 2 3 2 x. + Cho (H) là hình phẳng giới hạn bởi đường cong y x và nửa đường tròn có phương trình (phần tô đậm trong hình vẽ). Diện tích của (H) bằng? + Trong không gian Oxyz, cho ba điểm. Tìm m n để A B C thẳng hàng.
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Võ Văn Kiệt TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Võ Văn Kiệt TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán lớp 12 năm học 2019 – 2020 trường THPT Võ Văn Kiệt, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2019 – 2020 trường THPT Võ Văn Kiệt – TP HCM : + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;0;2),  B(3;1;-2) và mặt phẳng (P) có phương trình x y z 1 0. Hãy tìm điểm M a b c thuộc mặt phẳng (P) sao cho 3 2 MA MB đạt giá trị nhỏ nhất. + Điểm biểu diễn số phức: Cho A, B, C, D lần lượt là các điểm biểu diễn của các số phức 1 2 3 4 z 2 z 3 i z 2 2i z 1 i. Chọn kết luận đúng nhất: A. ABCD là chữ nhật B. ABCD là hình vuông. C. ABCD là hình bình hành D. ABCD là hình thoi. + Số nghiệm của phương trình 2 z z 2 0 trên tập số phức là?