Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Quốc Oai Hà Nội

Nội dung Đề Olympic lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Quốc Oai Hà Nội Bản PDF - Nội dung bài viết Đề thi Olympic Toán lớp 8 năm 2022 - 2023 phòng GD&ĐT Quốc Oai Hà Nội Đề thi Olympic Toán lớp 8 năm 2022 - 2023 phòng GD&ĐT Quốc Oai Hà Nội Chào các thầy cô giáo và các em học sinh lớp 8! Hôm nay, Sytu xin giới thiệu đến bạn đề thi Olympic môn Toán cho lớp 8 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Quốc Oai, thành phố Hà Nội. Đề thi gồm các câu hỏi thú vị và bổ ích như sau: Bài 1: Cho đa thức P(x) với hệ số nguyên, biết P(2) = 10 và P(-2) = -6. Hãy tìm đa thức P(x) biết rằng khi chia cho đa thức x^2 - 4, ta được thương là (2x + 6) và còn dư. Bài 2: Một xe đạp, một xe máy và một ô tô cùng đi từ A đến B vào các giờ khác nhau, với vận tốc lần lượt là 15 km/h, 35 km/h, 55 km/h. Hỏi lúc mấy giờ thì ô tô cách đều xe đạp và xe máy? Bài 3: Cho hình chữ nhật ABCD, AC cắt BD tại O, trên đoạn OD lấy điểm P bất kỳ. Gọi M là điểm đối xứng với C qua P. Hãy giải các yêu cầu sau: a/ Tứ giác AMDB là hình gì? b/ Chứng minh rằng EF // AC và ba điểm E, F, P thẳng hàng. c/ Chứng minh rằng tỉ số các cạnh của hình chữ nhật AEMF không phụ thuộc vào vị trí của điểm P trên OD. d/ Nếu CP vuông góc BD, CP = 2,4 cm và PD/PB = 9/16, hãy tính các cạnh của hình chữ nhật ABCD. Hy vọng rằng đề thi sẽ giúp các em ôn tập và rèn luyện kỹ năng Toán một cách hiệu quả. Chúc các em thành công và giải đề thi thật tốt!

Nguồn: sytu.vn

Đọc Sách

Đề chọn học sinh giỏi Toán 8 năm 2020 - 2021 phòng GDĐT Bắc Ninh
Ngày 11 tháng 01 năm 2021, phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh tổ chức kì thi chọn học sinh giỏi (HSG) cấp thành phố môn Toán lớp 8 năm học 2020 – 2021. Đề chọn học sinh giỏi Toán 8 năm 2020 – 2021 phòng GD&ĐT Bắc Ninh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề chọn học sinh giỏi Toán 8 năm 2020 – 2021 phòng GD&ĐT Bắc Ninh : + Đa thức f(x) chia cho x + 1 thì được dư là 5, nếu chia cho x2 + 1 thì được dư là x + 2. Tìm dư trong phép chia f(x) cho x3 + x2 + x + 1. + Tìm các số nguyên x, y thỏa mãn: 5x + 53 = 2xy + 8y^2. + Cho hình vuông ABCD, gọi E là điểm bất kỳ trên cạnh BC, tia AE cắt DC tại M, tia DE cắt AB tại N, BM cắt CN tại K, NC cắt AD tại I. 1. Chứng minh: BC^2 = BN.CM và BM vuông góc với CN. 2. Gọi Q là hình chiếu của I trên BC. Tính góc AKQ. 3. Xác định vị trí của E trên cạnh BC để chu vi tam giác BKC lớn nhất.
Đề giao lưu HSG Toán 8 năm 2018 - 2019 phòng GDĐT Chí Linh - Hải Dương
Đề giao lưu HSG Toán 8 năm 2018 – 2019 phòng GD&ĐT Chí Linh – Hải Dương được biên soạn theo hình thức tự luận với 05 bài toán, học sinh có 150 phút để làm bài thi, kỳ thi nhằm giao lưu đội tuyển học sinh giỏi Toán 8 của các trường THCS trên địa bàn thành phố Chí Linh, tỉnh Hải Dương. Trích dẫn đề giao lưu HSG Toán 8 năm 2018 – 2019 phòng GD&ĐT Chí Linh – Hải Dương : + Chứng minh rằng không tồn tại số nguyên n thỏa mãn: (2014^2014 + 1) chia hết cho n^3 + 2012n. + Cho hình vuông ABCD, M là một điểm nằm giữa B và C. Kẻ AN vuông góc với AM, AP vuông góc với MN (N và P thuộc đường thẳng CD). a) Chứng minh tam giác AMN vuông cân. b) Chứng minh rằng: AN^2 = NC.NP. c) Gọi Q là giao điểm của tia AM và tia DC. Chứng minh tổng 1/AM^2 + 1/AQ^2 không đổi khi điểm M thay đổi trên cạnh BC. + Cho các số x, y không âm thay đổi và thỏa mãn x + y = 1. Tìm giá trị lớn nhất của biểu thức:Q = (4x^2 + 3y)(4y^2 + 3x) + 25xy.
Đề Olympic Toán 8 năm 2018 - 2019 phòng GDĐT TX Thái Hòa - Nghệ An
THCS. giới thiệu đến các em học sinh lớp 8 đề Olympic Toán 8 năm 2018 – 2019 phòng GD&ĐT TX Thái Hòa – Nghệ An, nhằm giao lưu và tuyển chọn các em học sinh giỏi Toán 8 đang học tập tại các trường THCS trên địa bàn Thị xã Thái Hòa, tỉnh Nghệ An. Đề Olympic Toán 8 năm 2018 – 2019 phòng GD&ĐT TX Thái Hòa – Nghệ An được biên soạn theo hình thức tự luận với 05 bài toán, học sinh làm bài trong 90 phút. Trích dẫn đề Olympic Toán 8 năm 2018 – 2019 phòng GD&ĐT TX Thái Hòa – Nghệ An : + Cho tam giác ABC vuông tại A, có trung tuyến AM, đường cao AH. Trên cùng nửa mặt phẳng bờ BC kẻ hai tia Ax và Cy cùng vuông góc với BC. Qua A kẻ đường thẳng vuông góc với AM cắt Bx và Cy lần lượt tại P và Q. Chứng minh: a) AP = BP và AQ = CQ. b) PC đi qua trung điểm I của AH. c) Khi BC cố định, BC = 2a, điểm A chuyển động sao cho BAC = 90°. Tìm vị trí điểm H trên đoạn thẳng BC để diện tích tam giác ABH đạt giá trị lớn nhất, tìm giá trị lớn nhất đó. [ads] + Cho phân thức: P = (n^3 + 2n^2 – 1)/(n^3 + 2n^2 + 2n + 1). a) Hãy tình điều kiện xác định và rút gọn phân thức trên. b) Chứng minh rằng nếu n là một số nguyên thì giá trị phân thức tìm được trong câu a luôn là một phân số tối giản. + Tìm đa thức f(x) biết: f(x) chia cho x – 2 dư 5; f(x) chia cho x – 3 dư 7; f(x) chia cho (x – 2)(x – 3) được thương là x^2 -1 và đa thức dư là đa thức bậc nhất đối với x.
Đề học sinh giỏi huyện Toán 8 năm 2018 - 2019 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2018 – 2019 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.