Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm học thêm chuyên đề các phép toán cộng, trừ, nhân, chia số tự nhiên

Nội dung Tài liệu dạy thêm học thêm chuyên đề các phép toán cộng, trừ, nhân, chia số tự nhiên Bản PDF Tài liệu dạy thêm học thêm chuyên đề các phép toán cộng, trừ, nhân, chia số tự nhiên là một tài liệu được thiết kế dành riêng cho học sinh lớp 6 để hỗ trợ cho quá trình dạy và học môn Toán. Tài liệu này bao gồm 17 trang và được tổng hợp từ tóm tắt lý thuyết, phương pháp giải các dạng toán và bài tập chuyên đề về các phép toán cộng, trừ, nhân, chia số tự nhiên.

Phần I của tài liệu là Tóm tắt lý thuyết, nơi tổng hợp các kiến thức và khái niệm cơ bản về các phép toán cộng, trừ, nhân, chia số tự nhiên. Phần này giúp học sinh nắm vững kiến thức lý thuyết để có thể áp dụng vào việc giải các bài tập.

Phần II là Các dạng bài, trong đó chia thành 4 phần tương ứng với các phép toán cộng, trừ, nhân, chia số tự nhiên.

Phần 1 của phép cộng hai số tự nhiên tập trung vào cách tính tổng một cách hợp lý. Học sinh sẽ được hướng dẫn sử dụng các tính chất giao hoán, kết hợp của phép cộng để tạo tổng tròn chục, tròn trăm. Bài tập dạng 2 tập trung vào cách tìm số chưa biết bằng cách sử dụng quan hệ phép cộng và trừ. Bài tập dạng 3 là bài toán có lời giải, hướng dẫn học sinh đọc và hiểu đề toán, xác định yêu cầu của bài toán và tìm cách giải.

Phần 2 của phép trừ hai số tự nhiên giải thích cách thực hiện phép tính trừ theo thứ tự từ trái qua phải. Bài tập dạng 2 giúp học sinh tìm số chưa biết trong một phép tính bằng cách sử dụng quan hệ phép cộng và trừ. Bài tập dạng 3 là bài toán thực tế, hướng dẫn học sinh đọc và hiểu đề toán, xác định yêu cầu và áp dụng kiến thức để giải bài toán. Bài tập dạng 4 tập trung vào việc tính tổng theo quy luật dùng công thức.

Phần 3 của phép nhân hai số tự nhiên tập trung vào cách tính một cách hợp lý bằng cách áp dụng tính chất giao hoán, kết hợp của phép nhân. Hơn nữa, học sinh cũng được hướng dẫn sử dụng tính chất phân phối của phép nhân để tính tổng một cách hợp lý. Bài tập dạng 2 giúp học sinh tính nhẩm bằng cách áp dụng các tính chất và chia các thừa số với cùng một số thích hợp. Bài tập dạng 3 giúp học sinh tìm x thông qua quy tắc đã học.

Phần 4 của phép chia hai số tự nhiên giải thích cách thực hiện phép tính chia theo quy tắc nhân chia trước, cộng trừ sau. Bài tập dạng 2 giúp học sinh tìm x thông qua quy tắc đã học. Bài tập dạng 3 là bài toán thực tế, hướng dẫn học sinh đọc và hiểu đề bài, xác định yêu cầu và áp dụng kiến thức để giải bài toán. Bài tập dạng 4 là bài trắc nghiệm.

Tài liệu này được tổ chức rõ ràng và có cấu trúc logic, giúp học sinh dễ dàng tiếp thu kiến thức và áp dụng vào việc giải các bài tập. Nó cũng giúp giáo viên có một công cụ hữu ích để dạy và kiểm tra kiến thức của học sinh.

Nguồn: sytu.vn

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm hai bài toán về phân số
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hai bài toán về phân số, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT * Sách CÁNH DIỀU: 1. Tìm giá trị phân số của một số cho trước. + Muốn tìm m n của một số a cho trước ta tính m a n với m N n N. + Giá trị m% của số a là giá trị phân số 100 m của số a. + Muốn tìm giá trị của m% của số a cho trước, ta tính 100 m a m. 2. Tìm một số biết giá trị phân số của nó. + Muốn tìm một số biết m n của số đó bằng a, ta tính a m n với m n N. + Muốn tìm một số biết m% của nó bằng a ta tính 100 m a m. * Sách KẾT NỐI TRI THỨC: 1. Tìm giá trị phân số của một số cho trước. Muốn tìm m n của một số a cho trước ta tính m a n với m N n N. 2. Tìm một số biết giá trị phân số của nó. Muốn tìm một số biết m n của số đó bằng b ta tính m b n với m n N. B. BÀI TẬP TRẮC NGHIỆM DẠNG 1: TÌM GIÁ TRỊ PHÂN SỐ CỦA MỘT SỐ CHO TRƯỚC. DẠNG 2: TÌM MỘT SỐ BIẾT GIÁ TRỊ PHÂN SỐ CỦA NÓ.
Tóm tắt lý thuyết và bài tập trắc nghiệm phép nhân và phép chia phân số
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép nhân và phép chia phân số, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT I. Lý thuyết. * Quy tắc nhân hai phân số được xác định như sau: + Muốn nhân hai phân số, ta nhân các tử với nhau và nhân các mẫu với nhau. + Muốn nhân một số nguyên với một phân số, ta nhân số nguyên đó với tử của phân số và giữ nguyên mẫu. * Tính chất của phép nhân phân số: + Tính chất giao hoán. + Tính chất kết hợp. + Tính chất phân phối. + Khi nhân nhiều phân số, ta có thể đổi chỗ hoặc nhóm các phân số một cách tuỳ ý để việc tính toán thuận lợi. * Phân số nghịch đảo: + Hai số được gọi là nghịch đảo của nhau nếu tích của chúng bằng 1. * Quy tắc chia hai phân số được xác định như sau: + Phân số nghịch đảo của c d là d c. + Muốn chia một phân số cho một phân số khác 0, ta nhân số bị chia với phân số nghịch đảo của số chia: a c a d a d b d b c b c. B. BÀI TẬP TRẮC NGHIỆM Dạng 1: Thực hiện phép tính. Dạng 2: Tìm x. Dạng 3: Toán có lời văn.
Tóm tắt lý thuyết và bài tập trắc nghiệm phép cộng và phép trừ phân số
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép cộng và phép trừ phân số, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT I. PHÉP CỘNG PHÂN SỐ. 1. Quy tắc cộng hai phân số. a) Cộng hai phân số cùng mẫu. Muốn cộng hai phân số có cùng mẫu, ta cộng các tử và giữ nguyên mẫu a b a b m m m. b) Cộng hai phân số không cùng mẫu. Muốn cộng hai phân số không cùng mẫu, ta viết chúng dưới dạng hai phân số cùng mẫu rồi cộng các tử và giữ nguyên mẫu chung. 2. Tính chất của phép cộng phân số. Giống như phép cộng số tự nhiên, phép cộng phân số cũng có các tính chất: giao hoán, kết hợp, cộng với số 0. II. PHÉP TRỪ PHÂN SỐ. 1. Số đối của một phân số. Số đối của phân số a b kí hiệu là a b. Ta có: 0 a a b b. 2. Quy tắc trừ hai phân số. – Muốn trừ hai phân số có cùng mẫu, ta trừ tử của số bị trừ cho tử của số trừ và giữ nguyên mẫu. a b a b m m m. – Muốn trừ hai phân số không cùng mẫu, ta quy đồng mẫu những số đó rồi trừ tử của số bị trừ cho tử của số trừ và giữ nguyên mẫu chung. – Muốn trừ hai phân số, ta cộng số bị trừ với số đối của số trừ: a c a c b d b d. III. QUY TẮC DẤU NGOẶC. Quy tắc dấu ngoặc đối với phân số giống như quy tắc dấu ngoặc đối với số nguyên. IV. CÁC DẠNG TOÁN THƯỜNG GẶP. Dạng 1: Thực hiện phép tính. Dạng 2: Tìm x biết. Dạng 3: Toán lời văn. B. BÀI TẬP TRẮC NGHIỆM DẠNG 1. THỰC HIỆN PHÉP TÍNH. DẠNG 2. TÌM x. DẠNG 3. TOÁN LỜI VĂN.
Tóm tắt lý thuyết và bài tập trắc nghiệm so sánh phân số, hỗn số dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề so sánh phân số, hỗn số dương, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT I. QUY ĐỒNG MẪU NHIỀU PHÂN SỐ. Để quy đồng mẫu hai hay nhiều phân số có mẫu số dương, ta làm như sau: + Tìm một bội chung (thường là BCNN) của các mẫu để làm mẫu chung. + Tìm thừa số phụ của mỗi mẫu bằng cách chia mẫu chung cho từng mẫu. + Nhân tử và mẫu của mỗi phân số với thừa số phụ tương ứng. II. SO SÁNH HAI PHÂN SỐ. 1. So sánh hai phân số có cùng mẫu. Trong hai phân số cùng một mẫu số dương, phân số nào có tử lớn hơn thì phân số đó lớn hơn. 2. So sánh hai phân số không cùng mẫu. Muốn so sánh hai phân số không cùng mẫu, ta viết chúng dưới dạng hai phân số có cùng một mẫu dương rồi so sánh tử với nhau: Phân số nào có tử lớn hơn thì phân số đó lớn hơn. III. HỖN SỐ DƯƠNG. 1. Hỗn số. Một số có dạng b a c được gọi là một hỗn số trong đó a là phần nguyên, b c là phần phân số. Hỗn số b a c được đọc là a b phần c (vd 2 3 3 đọc là Ba hai phần ba). 2. Chuyển từ phân số sang hỗn số. Muốn viết một phân số (lớn hơn 1) a b trong đó a b c d (a chia b được thương c dư d) thì khi đó a b c d d d c c b b b b. Vậy a d c b b. 3. Chuyển từ hỗn số sang phân số. Muốn viết một hỗn số b a c về dạng một phân số ta làm như sau: b a c b a c c. B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.