Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Tương Dương Nghệ An

Nội dung Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Tương Dương Nghệ An Bản PDF - Nội dung bài viết Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Tương Dương Nghệ An Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Tương Dương Nghệ An Sytu xin gửi đến các thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022 – 2023 của phòng Giáo dục và Đào tạo huyện Tương Dương, tỉnh Nghệ An. Đề thi bao gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài là 150 phút. Trích dẫn một số câu hỏi trong Đề học sinh giỏi huyện Toán lớp 9 năm 2022 – 2023 phòng GD&ĐT Tương Dương – Nghệ An: Với a, b là các số nguyên. Chứng minh rằng nếu 4a2 + 3ab − 11b2 chia hết cho 5 thì a4 − b4 chia hết cho 5. Cho hình vuông ABCD điểm N trên cạnh AB. Gọi E là giao điểm của CN và DA. Kẻ tia Cx vuông góc với CE cắt AB tại F, M là trung điểm của đoạn thẳng EF. Chứng minh rằng: CE = CF ACE = BCM Khi điểm N di chuyển trên cạnh AB (N không trùng với A và B) thì M chuyển động trên một đường thẳng cố định. Cho a, b là hai số dương thỏa mãn a + b >= 1. Tìm giá trị nhỏ nhất của biểu thức: F = (a3 + b3)2 + (a2 + b2) + 3/2ab. Đề thi này đòi hỏi sự tư duy, logic và kiến thức sâu rộng từ các em học sinh. Hy vọng rằng các em sẽ tự tin và thành công trong kì thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát HSG lần 1 Toán 9 năm 2017 - 2018 trường THCS Thanh Lãng - Vĩnh Phúc
Đề khảo sát HSG lần 1 Toán 9 năm 2017 – 2018 trường THCS Thanh Lãng – Vĩnh Phúc gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát HSG lần 1 Toán 9 năm 2017 – 2018 trường THCS Thanh Lãng – Vĩnh Phúc : + Cho đa thức P(x) = ax3 + bx2 + cx + d với a, b, c, d là các hệ số nguyên. Chứng minh rằng nếu P(x) chia hết cho 5 với mọi giá trị nguyên của x thì các hệ số a, b, c, d đều chia hết cho 5. + Cho ABC nhọn, có ba đường cao AD, BI, CK cắt nhau tại H. Gọi chân các đường vuông góc hạ từ D xuống AB, AC lần lượt là E và F. a) Chứng minh rằng: AE.AB = AF.AC b) Giả sử HD = 1 3 AD. Chứng minh rằng: tanB.tanC = 3 c) Gọi M, N lần lượt là chân đường vuông góc kẻ từ D đến BI và CK. Chứng minh rằng: 4 điểm E, M, N, F thẳng hàng. + Cho a, b, c là 3 số dương thỏa mãn điều kiện 1 1 1 2 a + b + 1 b + c + 1 c + a + 1 Tìm giá trị lớn nhất của tích (a + b)(b + c)(c + a).
Đề học sinh giỏi huyện Toán 9 năm 2015 - 2016 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho các số thực x y z thỏa mãn đồng thời các điều kiện 2 22 x y z xy yz zx và 2015 2015 2015 2016 xyz 3. Tìm x y z. + Cho x, y là hai số không âm thỏa mãn điều kiện 2 2 xy x y 1. Tính giá trị của biểu thức: 2 2 Tx y y x 1 1. + Cho đường tròn O R và đường thẳng d cố định, d không có điểm chung với đường tròn. Gọi M là điểm thuộc đường thẳng d. Qua M kẻ hai tiếp tuyến MA MB tới đường tròn (A B là các tiếp điểm). Từ O kẻ OH vuông góc với đường thẳng d H d. Nối A với B AB cắt OH tại K và cắt OM tại I. Tia OM cắt O R tại E. a) Chứng minh rằng năm điểm AOBHM cùng thuộc một đường tròn. b) Chứng minh rằng OK OH OI OM. c) Chứng minh E là tâm đường tròn nội tiếp tam giác MAB. d) Tìm vị trí của M trên đường thẳng d để diện tích tam giác OIK đạt giá trị lớn nhất.
Đề học sinh giỏi huyện Toán 9 năm 2014 - 2015 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho biểu thức x x x x A 2 4 3 2 với x 0 1 x. a) Rút gọn biểu thức A. b) Tìm giá trị lớn nhất của biểu thức A. + Cho hàm số bậc nhất 2 y 1 3m x 5m 2 (1) và đường thẳng d: y 2x 3. a) Tìm giá trị của tham số m để hàm số (1) là hàm số đồng biến trên. b) Tìm giá trị của tham số m để đồ thị hàm số 2 y 1 3m x 5m 2 và đường thẳng d cắt nhau tại một điểm trên trục tung. c) Tìm trên đường thẳng d những điểm có tọa độ thoả mãn đẳng thức 2 2 x y xy 2 40. + Cho m là một số nguyên. Chứng minh rằng: a) 5 m m chia hết cho 30. b) Biểu thức 532 7 30 6 2 10 mmm m P là một số nguyên.
Đề học sinh giỏi huyện Toán 9 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho hai đường thẳng y = 6 + 2x và y = 3 – x. a. Tìm toạ độ giao điểm M của hai đường thẳng trên. b. Gọi giao điểm của hai đường thẳng trên với trục hoành theo thứ tự là A và B. Tính diện tích tam giác MAB. + Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B). a) Chứng minh: AMDE là tứ giác nội tiếp đường tròn. b) Chứng minh: MA2 = MD.MB c) Vẽ CH vuông góc với AB (H AB). Chứng minh rằng MB đi qua trung điểm của CH. + Cho 4 số thực a b c d thỏa mãn điều kiện: ac 2.(b + d) Chứng minh rằng có ít nhất một trong các bất đẳng thức sau là sai: a 4b 2 c 4d.