Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hệ phương trình ôn thi vào lớp 10

Tài liệu gồm 108 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề hệ phương trình, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. HỆ ĐỐI XỨNG LOẠI 1 Một hệ phương trình ẩn x, y được gọi là hệ phương trình đối xứng loại 1 nếu mỗi phương trình ta đổi vai trò của x, y cho nhau thì phương trình đó không đổi. Tính chất: Nếu x y 0 0 là một nghiệm thì hệ y x 0 0 cũng là nghiệm. Cách giải: Đặt S xy P xy điều kiện 2 S P 4 quy hệ phương trình về 2 ẩn S P. HỆ ĐỐI XỨNG LOẠI 2 Một hệ phương trình 2 ẩn x y được gọi là đối xứng loại 2 nếu trong hệ phương trình ta đổi vai trò x y cho nhau thì phương trình trở thành phương trình kia. Tính chất: Nếu x y 0 0 là 1 nghiệm của hệ thì y x 0 0 cũng là nghiệm. Phương pháp giải: Trừ vế với vế hai phương trình của hệ ta được một phương trình có dạng 0 x y x y f xy f xy. HỆ CÓ YẾU TỐ ĐẲNG CẤP ĐẲNG CẤP Là những hệ chứa các phương trình đẳng cấp. Hoặc các phương trình của hệ khi nhân hoặc chia cho nhau thì tạo ra phương trình đẳng cấp. Một số hệ phương trình tính đẳng cấp được giấu trong các biểu thức chứa căn đòi hỏi người giải cần tinh ý để phát hiện. Phương pháp chung để giải hệ dạng này là: Từ các phương trình của hệ ta nhân hoặc chia cho nhau để tạo ra phương trình đẳng cấp bậc n. PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG Biến đổi tương đương là phương pháp giải hệ dựa trên những kỹ thuật cơ bản như: Thế / biến đổi các phương trình về dạng tích,cộng trừ các phương trình trong hệ để tạo ra phương trình hệ quả có dạng đặc biệt. PHƯƠNG PHÁP ĐẶT ẨN PHỤ Đặt ẩn phụ là việc chọn các biểu thức f xy gxy trong hệ phương trình để đặt thành các ẩn phụ mới làm đơn giản cấu trúc của phương trình, hệ phương trình. Qua đó tạo thành các hệ phương trình mới đơn giản hơn, hay quy về các dạng hệ quen thuộc như đối xứng, đẳng cấp. Để tạo ra ẩn phụ người giải cần xử lý linh hoạt các phương trình trong hệ thông qua các kỹ thuật: Nhóm nhân tử chung, chia các phương trình theo những số hạng có sẵn, nhóm dựa vào các hằng đẳng thức, đối biến theo đặc thù phương trình. PHƯƠNG PHÁP ĐƯA VỀ HẰNG ĐẲNG THỨC Điểm mấu chốt khi giải hệ bằng phương pháp biến đổi theo các hằng đẳng thức. KHI TRONG HỆ CÓ CHỨA PHƯƠNG TRÌNH BẬC 2 THEO ẨN x HOẶC y Khi trong hệ phương trình có chứa phương trình bậc hai theo ẩn x hoặc y ta có thể nghỉ đến các hướng xử lý như sau: Nếu ∆ chẵn, ta giải x theo y rồi thế vào phương trình còn lại của hệ để giải tiếp. Nếu ∆ không chẵn ta thường xử lý theo cách: Cộng hoặc trừ các phương trình của hệ để tạo được phương trình bậc hai có ∆ chẵn hoặc tạo thành các hằng đẳng thức. Dùng điều kiện ∆ ≥ 0 để tìm miền giá trị của biến x y. Sau đó đánh giá phương trình còn lại trên miền giá trị x y vừa tìm được. PHƯƠNG PHÁP ĐÁNH GIÁ Để giải được hệ phương trình bằng phương pháp đánh giá ta cần nắm chắc các bất đẳng thức cơ bản như: Cauchy, Bunhicopxki, các phép biến đổi trung gian giữa các bất đẳng thức, qua đó để đánh giá tìm ra quan hệ x y. Ngoài ra ta cũng có thể dùng hàm số để tìm GTLN – GTNN từ đó có hướng đánh giá, so sánh phù hợp.

Nguồn: toanmath.com

Đọc Sách

137 câu giải toán bằng cách lập PT - HPT trong đề thi vào lớp 10 môn Toán
Tài liệu gồm 84 trang, được tổng hợp bởi thầy giáo Nguyễn Chí Thành, tuyển tập 137 câu giải toán bằng cách lập phương trình hoặc hệ phương trình trong các đề thi tuyển sinh vào lớp 10 môn Toán. Trích dẫn tài liệu 137 câu giải toán bằng cách lập PT – HPT trong đề thi vào lớp 10 môn Toán: + Khảo sát vòng 1 – THCS Ái Mộ – Long Biên – 2019 – 2020: Một máy bơm theo kế hoạch phải bơm đầy nước vào một bể cạn có dung tích 50 m3 trong một thời gian nhất định. Người công nhân vận hành máy đã cho máy bơm hoạt động với công suất tăng thêm 5 m3 / giờ, cho nên đã bơm đầy bể sớm hơn quy định 1 giờ 40 phút. Hỏi theo kế hoạch, mỗi giờ máy bơm phải bơm được bao nhiêu mét khối nước. + Trung tâm Bồi dưỡng Văn hóa Hà Nội – Amsterdam: Hội trường 200 chỗ của trường THPT Chuyên Hà Nội – Amsterdam có đúng 200 ghế được chia đều vào các dãy. Nhằm giãn cách xã hội, trong đợt phòng chống dịch COVID-19 để mỗi dãy bớt đi 2 ghế mà số ghế trong hội trường không đổi thì nhà trường phải kê thêm 5 dãy như thế nữa. Hỏi ban đầu, số ghế trong hội trường được chia thành bao nhiêu dãy? + Một ca nô đi xuôi dòng 54 km rồi quay ngược dòng 46 km và tổng thời gian cả đi lẫn về là 4 giờ. Nếu ca nô đi xuôi dòng 81 km và ngược dòng 23 km thì tổng thời gian đi cũng hết 4 giờ. Tính vận tốc riêng của ca nô và vận tốc của dòng nước, biết các vận tốc đó không đổi.
200 bài tập rút gọn biểu thức và bài toán liên quan trong đề thi vào 10 môn Toán
Tài liệu gồm 185 trang, được tổng hợp bởi thầy giáo Nguyễn Chí Thành, tuyển tập 200 bài tập rút gọn biểu thức và bài toán liên quan trong các đề thi tuyển sinh vào lớp 10 môn Toán, có đáp án và lời giải chi tiết. Trích dẫn tài liệu 200 bài tập rút gọn biểu thức và bài toán liên quan trong đề thi vào 10 môn Toán: + Cho biểu thức A và B. a) Tính giá trị biểu thức B khi x = 25. b) Biết P = B : A. Chứng minh rằng: P. c) Tìm giá trị nguyên của x để P nhận giá trị nguyên. + Cho biểu thức A. a) Rút gọn biểu thức A. b) Tính giá trị của x để A = 4/5. c) Tìm giá trị lớn nhất của biểu thức A. + Cho hai biểu thức A và B với x >= 0 và x khác 1. a) Tính giá trị của biểu thức A khi x = 4. b) Rút gọn biểu thức C = A + B. c) So sánh giá trị của biểu thức C với 1.
Tuyển tập 400 bài toán hình học trong các đề thi vào lớp 10 môn Toán
Tài liệu gồm 567 trang, tuyển tập 400 bài toán hình học trong các đề thi vào lớp 10 môn Toán, có đáp án / đáp số và lời giải chi tiết. Trích dẫn tài liệu tuyển tập 400 bài toán hình học trong các đề thi vào lớp 10 môn Toán: + Cho đường tròn (O) và đường kính AB R cm 2 10. Gọi C là trung điểm OA. Qua C kẻ dây MN vuông góc với OA tại C. Gọi K là điểm tùy ý trên cung nhỏ MB, H là giao điểm AK và MN. Chứng minh: a) Tứ giác BHCK nội tiếp, AMON là hình thoi. b) 2 AK AH R và tính diện tích hình quạt tao bởi OM, OB và cung MB. c) Trên KN lấy I sao cho KI KM, chứng minh NI KB. d) Tìm vị trí điểm K để chu vi tam giác MKB lớn nhất. + Cho nửa đường tròn (O;R) đường kính AB. Bán kính OC AB. Điểm E thuộc đoạn OC. Tia AE cắt nửa đường tròn (O) tại M. Tiếp tuyến của nửa đường tròn tại M cắt OC tại D. Chứng minh: a) Tứ giác OEMB nội tiếp và MDE cân. b) Gọi BM cắt OC tại K. Chứng minh BM BK không đổi khi E di chuyển trên OC và tìm vị trí của E để MA MB 2. c) Cho 0 ABE 30 tính S MOB và chứng minh khi E di chuyển trên OC thì tâm đường tròn ngoại tiếp CME thuộc một đường thẳng cố định. + Cho ABC đều nội tiếp (O;R) kẻ đường kính AD cắt BC tại H. Gọi M là một điểm trên cung nhỏ AC. Hạ BK AM tại K, BK cắt CM tại E, R cm 6. Chứng minh: a) Tứ giác ABHK nội tiếp và MBE cân. b) Tứ giác BOCD là hình thoi và gọi BE cắt (O) tại N và tính S MON. c) Tìm vị trí của M để chu vi MBE lớn nhất và tìm quỹ tích điểm E khi M di chuyển trên cung nhỏ AC.
Tuyển tập một số bài toán bất đẳng thức trong kì thi tuyển sinh lớp 10 chuyên Toán
Tài liệu gồm 67 trang, được biên soạn bởi tác giả Nguyễn Nhất Huy (Tạp Chí Và Tư Liệu Toán Học), tuyển tập một số bài toán bất đẳng thức trong kì thi tuyển sinh lớp 10 chuyên Toán, có lời giải chi tiết. Mục lục tài liệu tuyển tập một số bài toán bất đẳng thức trong kì thi tuyển sinh lớp 10 chuyên Toán: 1 Các kiến thức cơ bản về bất đẳng thức. 1.1 Một số kí hiệu sử dụng trong tài liệu (Trang 2). 1.2 Bất đẳng thức AM – GM (Trang 2). 1.3 Bất đẳng thức Cauchy – Schwarz (Trang 2). 1.4 Điều kiện có nghiệm của phương trình (Trang 2). 2 Các bài toán bất đẳng thức trong các kì thi tuyển sinh vào lớp 10 chuyên Toán. 3 Giới thiệu một số phương pháp chứng minh bất đẳng thức khác. 3.1 Tam thức bậc hai và phương pháp miền giá trị (Trang 38). 3.2 Phương pháp đổi biến PQR và bất đẳng thức Schur (Trang 45). 3.3 Phân tích tổng bình phương SOS và phân tích Schus – SOS (Trang 51). 4 Các bài toán luyện tập.