Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tập giá trị và GTLN - GTLN của hàm số lượng giác

Tài liệu gồm 23 trang, được biên soạn bởi quý thầy, cô giáo nhóm Nhóm Word – Biên Soạn Tài Liệu, hướng dẫn phương pháp giải bài toán trắc nghiệm tìm tập giá trị và giá trị lớn nhất – giá trị nhỏ nhất (GTLN – GTLN / max – min) của hàm số lượng giác, giúp học sinh học tốt chương trình Đại số và Giải tích 11 chương 1: Hàm số lượng giác và phương trình lượng giác. Nội dung tài liệu tập giá trị và GTLN – GTLN của hàm số lượng giác: I. PHƯƠNG PHÁP TÌM GTLN – GTLN CỦA HÀM SỐ LƯỢNG GIÁC 1. Các kiến thức về giá trị lớn nhất, giá trị nhỏ nhất: Cho hàm số y = f(x) xác định trên miền D ⊂ R. a. Số thực M được gọi là giá trị lớn nhất của hàm số y = f(x) trên D nếu: f(x) =< M với mọi x thuộc D và tồn tại x0 thuộc D sao cho f(x0) = M. b. Số thực m được gọi là giá trị nhỏ nhất của hàm số y = f(x) trên D nếu: f(x) >= m với mọi x thuộc D và tồn tại x0 thuộc D sao cho f(x0) = m. 2. Một số kiến thức ta sử dụng trong các bài toán này: a) Dựa vào tập giá trị của hàm số lượng giác. b) Bảng biến thiên của hàm số lượng giác. c) Kỹ thuật sử dụng máy tính cầm tay. [ads] II. BÀI TẬP TRẮC NGHIỆM Tuyển chọn câu hỏi và bài tập trắc nghiệm tìm tập giá trị của hàm số lượng giác, tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác, có đáp án và lời giải chi tiết, với đầy đủ 04 mức độ nhận thức: Mức độ 1 (Nhận biết), Mức độ 2 (Thông hiểu), Mức độ 3 (Vận dụng), Mức độ 4 (Vận dụng cao).

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm hàm số lượng giác và phương trình lượng giác - Nguyễn Đại Dương
Tài liệu gồm 24 với nội dung gồm: + Tóm tắt lý thuyết, công thức lượng giác và cách giải các phương trình lượng giác cơ bản + 129 bài tập trắc nghiệm hàm số và phương trình lượng giác + 5 bài tập tự luận phương trình lượng giác
50 câu trắc nghiệm chuyên đề Lượng giác - Bùi Thế Việt
50 câu trắc nghiệm chuyên đề Lượng giác – Bùi Thế Việt
Phương trình lượng giác trong đề thi Đại học - Huỳnh Đức Khánh
Các nội dung chính của tài liệu: + Phần 1: Các công thức cơ bản + Phần 2: Các công thức liên hệ + Phần 3: 5 Dạng phương trình lượng giác cơ bản + Phần 4: Một vài thủ thuật + Phần 5: Đề thi Đại học 2002 → 2012 + Phần 6: 100 Đề thi thử trên toàn quốc