Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG lớp 7 môn Toán năm 2016 2017 phòng GD ĐT Vĩnh Lộc Thanh Hóa

Nội dung Đề giao lưu HSG lớp 7 môn Toán năm 2016 2017 phòng GD ĐT Vĩnh Lộc Thanh Hóa Bản PDF - Nội dung bài viết Đề thi giao lưu HSG Toán lớp 7 năm 2016 - 2017 phòng GD&ĐT Vĩnh Lộc - Thanh Hóa Đề thi giao lưu HSG Toán lớp 7 năm 2016 - 2017 phòng GD&ĐT Vĩnh Lộc - Thanh Hóa Xin chào đến với đề giao lưu HSG Toán lớp 7 năm 2016 - 2017 của phòng GD&ĐT Vĩnh Lộc - Thanh Hóa! Đề thi này sẽ cung cấp cho các em học sinh lớp 7 một cơ hội để thử thách kiến thức và kỹ năng Toán của mình. Trong đề thi này, chúng ta sẽ gặp phải những bài toán phức tạp như phân giác của tam giác, tính độ dài cạnh của tam giác khi biết độ dài 3 đường cao, và chứng minh rằng một số là vô tỉ. Ví dụ: Cho tam giác ABC (AB < AC, góc B = 60 độ). Hai phân giác AD và CE của ABC cắt nhau ở I, từ trung điểm M của BC kẻ đường vuông góc với đường phân giác AI tại H, cắt AB ở P, cắt AC ở K. Hãy tính AIC và độ dài cạnh AK biết PK = 6cm, AH = 4 cm. Chứng minh IDE cân. Hãy cố gắng giải quyết và hiểu rõ từng bước để trả lời các câu hỏi này. Hãy học tập và chuẩn bị tốt nhất cho đề thi giao lưu HSG Toán lớp 7 năm 2016 - 2017 này. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic Toán 7 năm 2023 - 2024 phòng GDĐT Tứ Kỳ - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tứ Kỳ, tỉnh Hải Dương. Trích dẫn Đề thi Olympic Toán 7 năm 2023 – 2024 phòng GD&ĐT Tứ Kỳ – Hải Dương : + Cho đa thức F(x) = ax2 + bx + c trong đó a, b, c là các số hữu tỉ biết. Biết rằng F(0); F(1); F(2) đều có giá trị nguyên. Chứng minh rằng 2a là số nguyên. + Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + c2 = b2 + d2. Chứng minh rằng: a + b + c + d là hợp số. + Cho tam giác ABC cân tại A, có ba góc đều là góc nhọn. Về phía ngoài của tam giác ABC vẽ các tam giác vuông cân: ABE vuông cân tại B, ACF vuông cân tại C. Kẻ đường cao AH, trên tia đối của tia AH lấy điểm I sao cho AI = BC. Chứng minh: а) ЕAН = FAH. b) BI = CE và BI vuông góc với CE. c) Ba đường thẳng AH, CE, BF đồng quy.
Đề thi Olympic Toán 7 năm 2023 - 2024 phòng GDĐT Nghĩa Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Trích dẫn Đề thi Olympic Toán 7 năm 2023 – 2024 phòng GD&ĐT Nghĩa Đàn – Nghệ An : + Nhân dịp nghỉ lễ ngày giải phóng miền Nam 30/04, một trường THCS lập kế hoạch cho 3 nhóm học sinh khối 7 tham gia đi thăm quê Bác. Trong đó 2/3 số học sinh của nhóm I bằng 8/11 số học sinh của nhóm II và bằng 4/5 số học sinh của nhóm III. Biết rằng số học sinh của nhóm I ít hơn tổng số học sinh của nhóm II và nhóm III là 18 học sinh. Tính số học sinh của mỗi nhóm. + Cho tam giác ABC có góc A nhỏ hơn 90°. Trên nửa mặt phẳng bờ AB không chứa điểm C vẽ đoạn thẳng AM sao cho AM vuông góc AB và AM = AB. Trên nửa mặt phẳng bờ AC không chứa điểm B vẽ đoạn thẳng AN sao cho AN vuông góc AC và AN = AC. a) Chứng minh rằng: Tam giác AMC = tam giác ABN. b) Chứng minh: BN vuông góc CM. c) Kẻ AH vuông góc BC (H thuộc BC). Chứng minh AH đi qua trung điểm của MN. + Trong một bảng ô vuông gồm có 5 x 5 vuông, người ta viết vào mỗi ô vuông chỉ một trong 3 số 1; 0; -1. Chứng minh rằng trong các tổng của 5 số theo mỗi cột, mỗi hàng, mỗi đường chéo phải có ít nhất hai tổng số bằng nhau.
Đề thi Olympic Toán 7 năm 2023 - 2024 phòng GDĐT Thanh Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Thanh Oai, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 02 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 7 năm 2023 – 2024 phòng GD&ĐT Thanh Oai – Hà Nội : + Có hai chiếc hộp giống nhau. Trong mỗi hộp chứa 4 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4 (hai thẻ khác nhau thì ghi hai số khác nhau). Rút ngẫu nhiên một thẻ ở trong mỗi hộp. Tính xác suất để rút được hai thẻ ghi số giống nhau trong cùng một lần rút? + Cho tam giác ABC vuông tại A có AB = AC, có D là trung điểm BC. Trên đoạn BD lấy E (khác B, D), trên tia đối của tia CB lấy điểm F sao cho BE = CF. Kẻ các đường thẳng vuông góc với BC tại E cắt AB tại G, đường vuông góc với BC tại F cắt AC tại H. Gọi giao điểm của GH với BC là I a) Chứng minh BG = CH, IG = IH. b) Kẻ đường thẳng vuông góc với CA tại C, cắt AD tại M. Chứng minh MI vuông góc với GH. c) Đường thẳng vuông góc với DG tại D cắt AC tại K, chứng minh rằng AK + AG ≤ DG + DK. + Tìm số tự nhiên m, n sao cho 2 3 4 n m là số chính phương.
Đề thi Olympic Toán 7 năm 2022 - 2023 phòng GDĐT Đức Thọ - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Đức Thọ, tỉnh Hà Tĩnh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 7 năm 2022 – 2023 phòng GD&ĐT Đức Thọ – Hà Tĩnh : + Biểu đồ đoạn thẳng dưới đây biểu diễn số lượt khách đã đến ăn Phở Bò tại một nhà hàng vào một số thời điểm trong ngày. Tỉ số phần trăm số lượt khách vào ăn Phở tại thời điểm 11 giờ so với tổng số lượt khách vào ăn Phở tại thời điểm 9 giờ đến thời điểm 17 giờ là (Làm tròn kết quả đến chữ số thập phân thứ hai). + Một hộp có chứa bốn cái thẻ cùng loại, mỗi thẻ được ghi một trong các số 1; 2; 3; 4. Hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên hai thẻ trong hộp. Tính xác xuất của biến cố “Tích các số trên hai thẻ rút ra là số chẵn”. + Diện tích ba mặt của một hình hộp chữ nhật là 30 cm2, 40 cm2 và 75 cm2. Hỏi thể tích của hình hộp đó bằng bao nhiêu cm3?