Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG cấp trường lớp 7 môn Toán năm 2020 2021 trường THCS Cẩm Bình Hà Tĩnh

Nội dung Đề thi HSG cấp trường lớp 7 môn Toán năm 2020 2021 trường THCS Cẩm Bình Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi HSG cấp trường lớp 7 môn Toán năm 2020-2021 trường THCS Cẩm Bình Hà Tĩnh Đề thi HSG cấp trường lớp 7 môn Toán năm 2020-2021 trường THCS Cẩm Bình Hà Tĩnh Đề thi HSG cấp trường môn Toán lớp 7 năm học 2020-2021 của trường THCS Cẩm Bình - Hà Tĩnh là bài thi có tính chất khá nặng, yêu cầu kiến thức và sự suy luận logic cao. Bài thi gồm 10 câu dạng ghi kết quả và 01 câu tự luận, thời gian làm bài 120 phút. Trong đề thi, có một số câu hỏi khó như: + Trong tam giác ABC, các tia phân giác của góc B và góc C cắt nhau tại O. Hỏi số đo của góc A khi biết BOC = 120°? + Tìm số có ba chữ số, biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với ba số 1, 2 và 3. + Cho tam giác ABC có ba góc nhọn và AB < AC. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm của BE và CD. a) Chứng minh ABE = ADC. b) Tính số đo góc BIC. Bài thi này đòi hỏi sự tư duy, logic và kiến thức toán học sâu rộng từ các em học sinh lớp 7. Hy vọng rằng đề thi sẽ giúp các em rèn luyện kỹ năng giải toán và tự tin hơn trong việc học Toán.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát HSG Toán 7 năm 2016 - 2017 phòng GDĐT thành phố Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT thành phố Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT thành phố Thái Bình : + Một đội công nhân có 39 người, được chia thành ba nhóm I, II, III. Nếu thêm 1 người vào nhóm I, thêm 2 người vào nhóm II và bớt 3 người của nhóm III thì số công nhân của ba nhóm I, II, III tỉ lệ nghịch với các số 4; 3; 2. Tìm số công nhân của mỗi nhóm. + Cho tam giác DEF có D = 60. Tia phân giác của góc E cắt cạnh DF ở P. Tia phân giác của góc F cắt cạnh DE ở Q. Gọi O là giao điểm của PE và QF. 1. Tính số đo EOF và chứng minh OP = OQ. 2. Tìm điều kiện của tam giác DEF để hai điểm P và Q cách đều đường thẳng EF. + Cho tam giác ABC có góc A nhọn. Vẽ về phía ngoài tam giác ABC hai tam giác ABM, ACN vuông cân tại A. Gọi E là giao điểm của BN và CM. 1. Chứng minh ABN = AMC và BN CM. 2. Cho BM = 5 cm, CN = 7 cm, BC = 3 cm. Hãy tính độ dài đoạn thẳng MN.
Đề giao lưu HSG Toán 7 năm 2016 - 2017 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT Chí Linh – Hải Dương; đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT Chí Linh – Hải Dương : + Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của BC. a) Chứng minh AM BC và MA = MC. b) Lấy điểm D trên đoạn thẳng AB (D khác A và B), đường thẳng vuông góc với MD tại M cắt AC tại E. Chứng minh: MD = ME. c) Chứng minh: MD + ME >= AD + AE. + Hãy chia số 26 thành ba phần tỉ lệ nghịch với các số 2; 3; 4. + Cho đa thức. Tìm đa thức C = A – B. Tính giá trị của đa thức C tìm được ở trên khi 2x + y = 1.
Đề giao lưu HSG Toán 7 năm 2016 - 2017 phòng GDĐT Tam Dương - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT Tam Dương – Vĩnh Phúc; đề thi có đáp án + lời giải chi tiết + bảng hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT Tam Dương – Vĩnh Phúc : + Cho đoạn thẳng BC cố định, M là trung điểm của đoạn thẳng BC. Vẽ góc CBx sao cho CBx, trên tia Bx lấy điểm A sao cho độ dài đoạn thẳng BM và BA tỉ lệ với 1 và 2. Lấy điểm D bất kì thuộc đoạn thẳng BM. Gọi H và I lần lượt là hình chiếu của B và C trên đường thẳng AD. Đường thẳng AM cắt CI tại N. Chứng minh rằng: a) DN vuông góc với AC. b) BH2 + CI2 có giá trị không đổi khi D di chuyển trên đoạn thẳng BM. c) Tia phân giác của góc HIC luôn đi qua một điểm cố định. + Trong một bảng ô vuông gồm có 5×5 ô vuông, người ta viết vào mỗi ô vuông chỉ một trong 3 số 1; 0 hoặc -1. Chứng minh rằng trong các tổng của 5 số theo mỗi cột, mỗi hàng, mỗi đường chéo phải có ít nhất hai tổng số bằng nhau. + Cho đa thức f(x) = 2016.×4 – 32(25.k + 2).x2 + k2 – 100 (với k là số thực dương cho trước). Biết đa thức f(x) có đúng ba nghiệm phân biệt a, b, c (với a < b < c). Tính hiệu của a – c.
Đề học sinh giỏi Toán 7 năm 2016 - 2017 phòng GDĐT Gia Viễn - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi Toán 7 năm 2016 – 2017 phòng GD&ĐT Gia Viễn – Ninh Bình.