Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu luyện đạt điểm 8 - 9 - 10 môn Toán THPT Quốc gia

Xuất phát từ thực tế kì thi THPT Quốc gia 2015, với các bạn sử dụng kết quả môn Toán để xét tuyển đại học, thì sự cạnh tranh chủ yếu diễn ra ở bộ ba câu phân loại. Bộ ba câu này thường rơi vào các chủ đề Phương trình – Bất phương trình – Hệ phương trình, Hình học tọa độ phẳng, Bất đẳng thức – Tìm GTLN, GTNN. Nhằm mục đích cung cấp thêm cho các bạn chuẩn bị tham gia kì thi THPT Quốc gia 2016 một tài liệu tham khảo hữu ích, các thành viên của Diễn đàn toán học VMF đã cùng nhau biên soạn tài liệu này. Tài liệu bố cục gồm ba phần chính: + Phần đầu, chúng tôi tóm tắt một vài lý thuyết cơ bản tương ứng với 3 chủ đề đã nói ở trên để bạn đọc có thể tra cứu dễ dàng khi cần thiết. + Phần hai, cũng là nội dung chính của tài liệu, chúng tôi tổng hợp lại bộ ba câu phân loại trong các đề thi thử năm học 2014 – 2015. + Phần hướng dẫn, đáp số chúng tôi chủ yếu dựa trên đáp án của đơn vị ra đề, tuy nhiên trong một số bài toán chúng tôi có đưa ra cách tiếp cận khác hoặc chỉ hướng dẫn sơ lược có đáp số nhằm giúp bạn đọc chủ động hơn trong quá trình đọc tài liệu. Chúng tôi nhấn mạnh rằng, cách làm trong tài liệu này chưa hẳn là tốt nhất, bạn đọc cũng không nên quá coi trọng các lời giải mang đậm chất kĩ thuật, khó định hướng tự nhiên. Mặc dù chúng tôi đã cùng nhau biên soạn tài liệu này với tất cả sự tận tâm, tinh thần vì cộng đồng vô tư. Nhưng sự tỉ mỉ và cố gắng của chúng tôi chắc chắn chưa thể kiểm soát được hết các sai sót. Vì vậy sự nhiệt tâm từ phía bạn đọc cũng sẽ giúp tài liệu hoàn thiện hơn. Sau cùng, chúng tôi hi vọng cộng đồng chia sẻ trực tuyến sẽ dành cho chúng tôi sự tôn trọng tối thiểu bằng cách ghi rõ nguồn tài liệu khi chia sẻ. Không dùng tài liệu này để trục lợi cá nhân. Chúng tôi xin cảm ơn!

Nguồn: toanmath.com

Đọc Sách

Tuyển tập một số bài toán ứng dụng thực tiễn Võ Thanh Bình
Nội dung Tuyển tập một số bài toán ứng dụng thực tiễn Võ Thanh Bình Bản PDF - Nội dung bài viết Tuyển tập một số bài toán ứng dụng thực tiễn của Võ Thanh Bình Tuyển tập một số bài toán ứng dụng thực tiễn của Võ Thanh Bình Tài liệu này bao gồm một số bài toán ứng dụng thực tiễn được phân loại theo dạng bài và mức độ vận dụng. Dưới đây là một số ví dụ: 1. Bài toán về con kiến trong cốc: Có một cái cốc úp ngược với chiều cao 20cm, bán kính đáy là 3cm và bán kính miệng là 4cm. Con kiến đứng ở điểm A trên miệng cốc và muốn bò từ A đến điểm B ở đáy cốc. Hỏi con kiến phải bò quãng đường ngắn nhất là bao nhiêu? 2. Bài toán về cho thuê căn hộ: Một công ty bất động sản có 50 căn hộ cho thuê. Nếu giá thuê mỗi căn hộ là 2 triệu đồng/tháng, thì tất cả các căn hộ đều có người thuê. Tuy nhiên, nếu tăng giá thuê lên 100,000 đồng/tháng, thì có thêm hai căn hộ bị bỏ trống. Hỏi để có thu nhập cao nhất, công ty cần đặt giá thuê mỗi căn hộ là bao nhiêu? 3. Bài toán về xây đường ống dẫn nước: Một công ty muốn xây một đường ống dẫn từ điểm A trên bờ đến điểm B trên hòn đảo, với giá xây trên bờ là 50,000 USD/km và dưới nước là 130,000 USD/km. Tìm vị trí trên đoạn bờ mà khi nối ống theo hình tam giác thì chi phí ít nhất. Đây chỉ là một số ví dụ trong tuyển tập bài toán ứng dụng thực tiễn của Võ Thanh Bình, hi vọng sẽ giúp bạn rèn luyện kỹ năng giải quyết bài toán và áp dụng kiến thức vào thực tế một cách linh hoạt và sáng tạo!
Tổng hợp các bài toán mức độ vận dụng cao ôn thi THPT Quốc gia – Nhóm Toán
Nội dung Tổng hợp các bài toán mức độ vận dụng cao ôn thi THPT Quốc gia – Nhóm Toán Bản PDF - Nội dung bài viết Tổng hợp các bài toán mức độ vận dụng cao ôn thi THPT Quốc gia – Nhóm Toán Tổng hợp các bài toán mức độ vận dụng cao ôn thi THPT Quốc gia – Nhóm Toán Bộ tài liệu này bao gồm 94 trang với các bài toán mức độ vận dụng cao, được thiết kế để ôn luyện cho kỳ thi THPT Quốc gia 2017. Với những bài toán này, bạn sẽ có cơ hội ôn luyện để đạt điểm cao 9, 10 trong kỳ thi. Trích dẫn một số câu hỏi trong tài liệu: Một đoàn tàu di chuyển trên một đường thẳng ngang với vận tốc không đổi v0. Khi tắt máy, lực hãm và lực cản tổng hợp cả đoàn tàu bằng 1/10 trọng lượng của nó. Hỏi chuyển động của đoàn tàu sau khi tắt máy và hãm là gì? Một thanh AB dài 2a ban đầu được giữ ở góc nghiêng α = α0 với một đầu không ma sát với bức tường thẳng đứng. Khi buông thanh, nó sẽ trượt xuống dưới tác động của trọng lực. Hãy tính góc α theo thời gian t. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M là trung điểm của AD. Tính tỉ số thể tích của hai khối chóp S’.BCDM và S.ABCD. Với bộ tài liệu này, bạn sẽ được tiếp cận với những bài toán phức tạp và có cấu trúc logic sắc nét, giúp bạn nâng cao kiến thức và kỹ năng giải toán. Hãy cùng ôn luyện và chuẩn bị tốt nhất cho kỳ thi sắp tới!
Bài toán thực tế liên quan đến hình học Nguyễn Bá Hoàng
Nội dung Bài toán thực tế liên quan đến hình học Nguyễn Bá Hoàng Bản PDF - Nội dung bài viết Bài toán thực tế liên quan đến hình học Bài toán thực tế liên quan đến hình học Tài liệu này bao gồm 45 trang với các bài toán thực tế xoay quanh hình học, như tính toán đường đi ngắn nhất, diện tích lớn nhất, và tính toán diện tích và thể tích của các vật. Nội dung kiến thức: Cung cấp công thức tính chu vi, diện tích của các hình, và thể tích của các khối hình. Giải thích cách tìm giá trị lớn nhất, nhỏ nhất của hàm số trên một đoạn, khoảng, nửa đoạn, nửa khoảng. Hướng dẫn ứng dụng tích phân để tính diện tích hình phẳng và thể tích của khối tròn xoay. Ví dụ minh hoạ: Tài liệu này cung cấp 17 ví dụ minh họa có phân tích và lời giải chi tiết. Bài tập đề nghị: Gồm 83 bài toán trắc nghiệm thực tế liên quan đến hình học để học viên ôn tập và kiểm tra kiến thức. Hướng dẫn và đáp án: Tài liệu cung cấp hướng dẫn chi tiết và đáp án cho các bài tập, giúp học viên hiểu rõ hơn về nội dung hình học thực tế.
Bài toán thực tế và bài toán tối ưu min max Lê Viết Nhơn
Nội dung Bài toán thực tế và bài toán tối ưu min max Lê Viết Nhơn Bản PDF - Nội dung bài viết Bài toán thực tế và bài toán tối ưu min max Bài toán thực tế và bài toán tối ưu min max Trong tài liệu đặc biệt này, thầy Lê Viết Nhơn đã tổng hợp 23 trang về các bài toán thực tế và bài toán tối ưu min - max, với mục đích giúp học sinh hiểu rõ hơn về những vấn đề này. Phần 1 của tài liệu tập trung vào bài toán thực tế tối ưu, giúp người đọc có cái nhìn tổng quan về cách tiếp cận và giải quyết các vấn đề thực tế một cách tối ưu nhất. Phần 2 và Phần 3 của tài liệu bao gồm các bài toán thực tế liên quan đến tích phân, mũ, và logarit, giúp học sinh áp dụng kiến thức toán học vào các bài toán hàng ngày. Cuối cùng, Phần 4 chứa các bài tập rèn luyện được trích từ đề thi thử các trường THPT, giúp học sinh ôn tập và cải thiện kỹ năng giải bài toán. Với các ví dụ như việc gấp tấm kẽm thành hình lăng trụ, xác định vị trí điểm M để diện tích hình chữ nhật lớn nhất, và vấn đề thả cá trên một đơn vị diện tích hồ, tài liệu này không chỉ giúp học sinh hiểu rõ về bài toán tối ưu min - max mà còn giúp họ áp dụng kiến thức vào thực tế một cách linh hoạt và sáng tạo.