Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Đắk Nông

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán Trung học Cơ sở năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Nông; kỳ thi được diễn ra vào thứ Năm ngày 09 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Đắk Nông : + Một xe tải có chiều rộng là 2,4 m chiều cao là 2,5 m muốn đi qua một cái cổng hình Parabol (Hình minh họa). Biết khoảng cách giữa hai chân cổng là 4m và khoảng cách từ đỉnh cổng tới mỗi chân cổng là 25 m (bỏ qua độ dày của cổng). a) Trong mặt phẳng tọa độ Oxy gọi Parabol (P): y = ax2 với a < 0 là hình biểu diễn cổng mà xe tải muốn đi qua. Chứng minh a = −1. b) Hỏi xe tải có đi qua cổng được không? Tại sao? + Một cái tháp được xây dựng bên bờ một con sông, từ một điểm đối diện với tháp ngay bờ bên kia người ta nhìn thấy đỉnh tháp với góc nâng 60°. Từ một điểm khác cách điểm ban đầu 20m người ta cũng nhìn thấy đỉnh tháp với góc nâng 30 (Hình minh họa). Tính chiều cao của tháp và bề rộng của con sông. + Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn tâm O bán kính R. Vẽ đường tròn tâm K đường kính BC, cắt cạnh AB và AC lần lượt tại điểm F và E. Gọi H là giao điểm của BE và CF. a) Chứng minh: AF.AB = AE.AC. b) Từ A vẽ các tiếp tuyến AM và AN với đường tròn (K) (với M, N là hai tiếp điểm; N thuộc cung EC). Chứng minh: ba điểm M, H, N thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi cấp huyện Toán 9 năm 2022 - 2023 phòng GDĐT Ba Vì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Ba Vì, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 23 tháng 09 năm 2022.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Nha Trang - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Nha Trang, tỉnh Khánh Hòa; kỳ thi được diễn ra vào thứ Sáu ngày 23 tháng 09 năm 2022. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Nha Trang – Khánh Hòa : + Chứng minh rằng nếu n + 1 và 2n + 1 (n thuộc N) đều là số chính phương thì n chia hết cho 24. + Hai đội bóng bàn A và B của hai trường trung học cơ sở thi đấu giao hữu. Biết rằng mỗi đấu thủ của đội A phải lần lượt gặp đấu thủ của đội B một lần và số trận đấu gấp đôi tổng số đấu thủ của hai đội. Tính số đấu thủ của mỗi đội. + Giả sử mỗi điểm trong mặt phẳng được tô bằng một trong hai màu trắng hoặc đen. Chứng minh tồn tại một hình chữ nhật có đỉnh cùng màu.
Đề học sinh giỏi huyện môn Toán năm 2022 - 2023 phòng GDĐT Cam Lâm - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Cam Lâm, tỉnh Khánh Hòa; kỳ thi được diễn ra vào ngày 17 tháng 09 năm 2022. Trích dẫn đề học sinh giỏi huyện môn Toán năm 2022 – 2023 phòng GD&ĐT Cam Lâm – Khánh Hòa : + Một lớp học của trường X có 40 học sinh, trong đó có 30 học sinh thích môn Toán và 20 học sinh thích môn Văn. Hỏi : 1) Có nhiều nhất bao nhiêu học sinh thích cả hai môn Văn và Toán? 2) Có ít nhất bao nhiêu học sinh thích cả hai môn Văn và Toán? 3) Nếu chỉ có 3 học sinh không thích cả môn Văn lẫn môn Toán thì có bao nhiêu học sinh thích cả hai môn Văn lẫn Toán? + Cho tam giác ABC vuông tại A. Từ điểm D trên cạnh huyền BC kẻ DE vuông góc với AB, DF vuông góc với AC. 1) Chứng minh tứ giác AEDF là hình chữ nhật. 2) Chứng minh EA.EB + FA.FC = DB.DC. 3) Giả sử AB = 6cm, AC = 8cm. Xác định vị trí của điểm D để diện tích tứ giác AEDF là lớn nhất. + Năm vận động viên mang số áo là 1; 2; 3; 4; 5 được chia thành hai nhóm. Chứng tỏ rằng ở một trong hai nhóm ta luôn có hai vận động viên mà hiệu các số áo họ mang trùng với một trong các số áo mà người của nhóm đó mang.
Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Đức Thọ - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Đức Thọ, tỉnh Hà Tĩnh; kỳ thi được diễn ra vào thứ Năm ngày 15 tháng 09 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được biên soạn bởi thầy giáo Nguyễn Ngọc Hùng, giáo viên Toán trường THCS Hoàng Xuân Hãn, huyện Đức Thọ, tỉnh Hà Tĩnh). Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Đức Thọ – Hà Tĩnh : + Rút gọn biểu thức A. b) Cho các số thực a, b, c thỏa mãn a2 + b2 = 2. Tính giá trị của biểu thức P. c) Phân tích đa thức x(x + 2)(x2 + 2x + 2) + 1 thành nhân tử. + Cho đa thức f(x) = ax2 + bx + c với a, b, c là các số hữu tỉ. Biết rằng f(0), f(1), f(2) có giá trị nguyên. Chứng minh rằng 2a, 2b có giá trị nguyên. + Các điểm E và F lần lượt là trung điểm của các cạnh AB, AD của hình bình hành ABCD. Các đoạn thẳng CE và BF cắt nhau tại K. Qua điểm D kẻ đường thẳng song song với CE cắt đường thẳng AB tại N. Tia BF cắt DN tại P. a) Chứng minh rằng BE = 1/2.EN và KP = 2BK. b) Chứng minh rằng KF/KP = 3/4. c) Lấy điểm M thuộc đoạn CE sao cho BM song song với KD. Chứng minh rằng diện tích tam giác KFD bằng diện tích tứ giác BKDM.