Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Đắk Nông

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán Trung học Cơ sở năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Nông; kỳ thi được diễn ra vào thứ Năm ngày 09 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Đắk Nông : + Một xe tải có chiều rộng là 2,4 m chiều cao là 2,5 m muốn đi qua một cái cổng hình Parabol (Hình minh họa). Biết khoảng cách giữa hai chân cổng là 4m và khoảng cách từ đỉnh cổng tới mỗi chân cổng là 25 m (bỏ qua độ dày của cổng). a) Trong mặt phẳng tọa độ Oxy gọi Parabol (P): y = ax2 với a < 0 là hình biểu diễn cổng mà xe tải muốn đi qua. Chứng minh a = −1. b) Hỏi xe tải có đi qua cổng được không? Tại sao? + Một cái tháp được xây dựng bên bờ một con sông, từ một điểm đối diện với tháp ngay bờ bên kia người ta nhìn thấy đỉnh tháp với góc nâng 60°. Từ một điểm khác cách điểm ban đầu 20m người ta cũng nhìn thấy đỉnh tháp với góc nâng 30 (Hình minh họa). Tính chiều cao của tháp và bề rộng của con sông. + Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn tâm O bán kính R. Vẽ đường tròn tâm K đường kính BC, cắt cạnh AB và AC lần lượt tại điểm F và E. Gọi H là giao điểm của BE và CF. a) Chứng minh: AF.AB = AE.AC. b) Từ A vẽ các tiếp tuyến AM và AN với đường tròn (K) (với M, N là hai tiếp điểm; N thuộc cung EC). Chứng minh: ba điểm M, H, N thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Phúc Yên - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Phúc Yên, tỉnh Vĩnh Phúc; đề thi gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Phúc Yên – Vĩnh Phúc : + Nhân ngày Tết Trung thu, một rạp chiếu phim phục vụ khán giả một bộ phim hoạt hình với quy định về giá bán vé như sau: + Loại I (dành cho trẻ từ 6 đến 13 tuổi): 50.000đ một vé. + Loại II (dành cho người trên 13 tuổi): 100.000đ một vé. Lãnh đạo rạp chiếu phim tính được rằng: Để không phải bù lỗ số tiền bán vé thu được phải đạt tối thiểu 20 triệu đồng. Hết thời gian bán vé, nhân viên báo cáo với lãnh đạo tổng số vé bán được là 500 vé. Lãnh đạo rạp chiếu phim khẳng định ngay là không phải bù lỗ. Em hãy giải thích khẳng định đó? Số tiền lãi rạp thu được tối thiểu là bao nhiêu, biết rằng mỗi trẻ em phải có ít nhất một người lớn đi kèm. + Cho ba điểm A, O, B thẳng hàng (O nằm giữa A và B). Kẻ hai tia Ax, By cùng vuông góc và cùng phía với AB. Dựng góc vuông uOv, tia Ou cắt Ax tại C, tia Ov cắt By tại D. Cho OA = a, OB = b, OC = 2a. Tính theo a, b diện tích hình thang ABDC. + Cho tam giác đều ABC, E là điểm thuộc cạnh AC và không trùng với A, K là trung điểm của AE. Đường thẳng đi qua I và vuông góc với AB tại F cắt đường thẳng đi qua C và vuông góc với BC tại D. a) Chứng minh BCKF là hình thang cân. b) Tìm vị trí của E sao cho đoạn KD ngắn nhất.
Đề HSG Toán THCS cấp huyện năm 2023 - 2024 phòng GDĐT Diên Khánh - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Diên Khánh, tỉnh Khánh Hòa; kỳ thi được diễn ra vào thứ Tư ngày 04 tháng 10 năm 2023. Trích dẫn Đề HSG Toán THCS cấp huyện năm 2023 – 2024 phòng GD&ĐT Diên Khánh – Khánh Hòa : + Cho a, b, c là ba số nguyên phân biệt và đa thức P(x) có hệ số nguyên. Chứng minh rằng ít nhất một trong các đẳng thức sau là sai: P(a) = b; P(b) = c; P(c) = a. + Tìm tất cả các số nguyên tố p để p vừa là tổng vừa là hiệu của hai số nguyên tố. + Cho tứ giác ABCD có ABD = ACD = 90°. Gọi I, K theo thứ tự là hình chiếu vuông góc của B, C trên cạnh AD. Gọi M là giao điểm của CI và BK, O là giao điểm của AC và BD. Qua O vẽ OE vuông góc với BI tại E. a) Chứng minh rằng: OB.IB = OE.AB. b) Chứng minh rằng: OM vuông góc AD. c) Gọi H là giao điểm của AB và DC, L là giao điểm của OM và AD. Chứng minh rằng?
Đề khảo sát HSG Toán 9 lần 1 năm 2023 - 2024 phòng GDĐT Tam Kỳ - Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát học sinh giỏi môn Toán 9 lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Tam Kỳ, tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 28 tháng 09 năm 2023.
Đề khảo sát Toán 9 vòng 1 năm 2023 - 2024 trường THCS Giảng Võ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát các môn văn hóa và khoa học lớp 9 môn Toán vòng 1 năm học 2023 – 2024 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào Chủ Nhật ngày 01 tháng 10 năm 2023. Trích dẫn Đề khảo sát Toán 9 vòng 1 năm 2023 – 2024 trường THCS Giảng Võ – Hà Nội : + Cho n là số tự nhiên lớn hơn 1 thỏa mãn n2 + 4 và n2 + 11 đều là các số nguyên tố. Chứng minh rằng: n chia hết cho 5. + Cho tam giác ABC vuông tại A (AB < AC), H là chân đường vuông góc hạ từ A lên BC, M là trung điểm của AC, N là trung điểm của HC. Đường thẳng qua C song song với AB cắt MN tại P. 1) Chứng minh: Các tam giác ABM và CAP đồng dạng. 2) Gọi Q là chân đường vuông góc kẻ từ C lên AP. Chứng minh: HQN = 90°. 3) Đường thẳng HQ cắt MP tại I, gọi K là trung điểm của đoạn thẳng NI, G là trung điểm của đoạn thẳng HQ. Chứng minh: B, G, K thẳng hàng. + Các số nguyên dương 1; 2; …; 100 được chia thành 25 tập hợp (tập hợp nào cũng có ít nhất 1 phần tử). Chứng minh rằng tồn tại ba số nguyên dương thuộc cùng một trong những tập hợp đó sao cho ba số đó là độ dài ba cạnh của một tam giác.