Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Cần Thơ

Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Cần Thơ Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển học sinh giỏi THPT dự thi cấp Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Cần Thơ; kỳ thi được diễn ra vào ngày 22 tháng 09 năm 2023. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Cần Thơ : + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Hai đường cao BE, CF cắt nhau tại trực tâm H. Gọi M là trung điểm của BC. Đường thẳng AM và AH cắt đường tròn (O) lần lượt tại các điểm L, K (L, K khác A). Đường tròn đường kính AH cắt đường tròn (O) tại điểm T (T khác A). 4.1. Hai tiếp tuyến tại T và tại K của đường tròn (O) cắt nhau tại điểm J. Chứng minh rằng J thuộc đường thẳng BC và J là tâm đường tròn ngoại tiếp tam giác HKT. 4.2. Gọi P là giao điểm của EF và BC, X là giao điểm của HP và KL. Chứng minh rằng hai đường tròn ngoại tiếp tam giác HTX và tam giác TML tiếp xúc nhau. + Tìm tất cả các bộ (p, q, r, n) với p, q, r là các số nguyên tố và n là số tự nhiên sao cho p2 = q2 + rn. + Cho tập hợp S = {1; 2; 3; …; 2024}. Gọi A là tập con gồm k phần tử của tập S sao cho trong A luôn tồn tại ba phần tử x, y, z thỏa x = a + b, y = b + c, z = c + a với a, b, c là các phần tử đôi một khác nhau thuộc S. Tìm giá trị nhỏ nhất của k.

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG lớp 12 môn Toán cấp trường năm 2021 2022 trường chuyên Nguyễn Trãi Hải Dương
Nội dung Đề thi HSG lớp 12 môn Toán cấp trường năm 2021 2022 trường chuyên Nguyễn Trãi Hải Dương Bản PDF Đề thi HSG Toán lớp 12 cấp trường năm 2021 – 2022 trường chuyên Nguyễn Trãi – Hải Dương có lời giải chi tiết. Trích dẫn đề thi HSG Toán lớp 12 cấp trường năm 2021 – 2022 trường chuyên Nguyễn Trãi – Hải Dương : + Cho tam giác nhọn ABC với AB BC. Cho I là tâm nội tiếp của tam giác ABC và là đường tròn ngoại tiếp tam giác ABC. Đường tròn nội tiếp tam giác ABC tiếp xúc với BC tại K. Đường thẳng AK cắt tại điểm thứ hai T. Cho M là trung điểm của BC và N là điểm chính giữa cung BC chứa A của. Đoạn thẳng NT cắt đường tròn ngoại tiếp tam giác BIC ở P. Chứng minh rằng a) Cho KI cắt BIC tại điểm thứ hai X thì N T X thẳng hàng. b) PM // AK. + Cho dãy số x a x n n n a là nghiệm dương của phương trình 2 x kx với số nguyên dương k cho trước. Khi đó chứng minh rằng 1 1 1 (mod ) n n. + Có bao nhiêu cách lát kín bảng 2 2022 bởi các viên domino 1 2 và 2 1?
Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2021 2022 sở GD ĐT Ninh Bình
Nội dung Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2021 2022 sở GD ĐT Ninh Bình Bản PDF Sytu giới thiệu đến quý thầy cô giáo và các em học sinh đề thi học sinh giỏi Toán THPT cấp tỉnh năm học 2021 – 2022 sở GD&ĐT Ninh Bình; kỳ thi được diễn ra trong hai ngày 16 và 17 tháng 09 năm 2021.
Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Đồng Tháp
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Đồng Tháp Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; đề thi được biên soạn theo hình thức đề thi 100% trắc nghiệm, đề thi có đáp án và tóm tắt lời giải (lưu ý: đây là mã đề GỐC nên toàn bộ đáp án đều là A). Trích dẫn đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Đồng Tháp : + Từ một tấm tôn hình quạt OAB có 2 120 o OA AOB người ta xác định hai điểm M N lần lượt là trung điểm của OA OB rồi cắt tấm tôn theo hình chữ nhật MNPQ (như hình vẽ). Dùng hình chữ nhật đó tạo thành mặt xung quanh của một hình trụ với đường sinh MQ NP trùng khít nhau. Khối trụ tương ứng được tạo thành có thể tích là? + Trong không gian với hệ tọa độ Oxyz, cho a(1;-1;0) và hai điểm A(−4;7;3), B(4;4;5). Hai điểm M N thay đổi thuộc mặt phẳng Oxy sao cho MN cùng hướng a và MN = 5√2. Giá trị lớn nhất của |AM – BN| bằng? + Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;1;2), B(-1;0;4), C(0;-1;3) và điểm M thuộc mặt cầu (S): x2 + y2 + (z – 1)2 = 1. Nếu biểu thức MA2 + MB2 + MC2 đạt giá trị nhỏ nhất thì độ đài đoạn AM bằng? File WORD (dành cho quý thầy, cô):
Đề thi học sinh giỏi lớp 12 môn Toán năm 2020 2021 sở GD ĐT tỉnh Quảng Nam
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán năm 2020 2021 sở GD ĐT tỉnh Quảng Nam Bản PDF Thứ Sáu ngày 12 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Quảng Nam tổ chức kỳ thi chọn học sinh giỏi lớp 12 THPT cấp tỉnh môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi Toán lớp 12 năm 2020 – 2021 sở GD&ĐT tỉnh Quảng Nam mã đề 105 gồm 04 trang với 40 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi học sinh giỏi Toán lớp 12 năm 2020 – 2021 sở GD&ĐT tỉnh Quảng Nam : + Cho hình trụ có hai đáy là hai hình tròn tâm O và O’, bán kính đáy bằng 2a và chiều cao bằng 4a. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn đáy tâm O’ lấy điểm B sao cho AB = 5a. Tính thể tích của khối tứ diện ABOO’. + Trong không gian Oxyz, cho hai đường thẳng d1 và d2. Mặt cầu (S) tiếp xúc với d1 tại điểm có hoành độ bằng 1 và có tâm nằm trên đường thẳng d2. Điểm nào sau đây thuộc mặt cầu (S)? + Có 6 học sinh gồm 1 học sinh lớp 10, 2 học sinh lớp 11 và 3 học sinh lớp 12. Xếp ngẫu nhiên 6 học sinh đó thành một hàng ngang. Xác suất để học sinh lớp 10 đứng xen kẽ giữa 2 học sinh lớp 12 bằng? File WORD (dành cho quý thầy, cô):