Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm - học thêm chuyên đề phép cộng và phép trừ số nguyên

Tài liệu gồm 13 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề phép cộng và phép trừ số nguyên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHÉP CỘNG SỐ NGUYÊN PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Thực hiện phép cộng. * Để thực hiện phép cộng các số nguyên, ta cần áp dụng quy tắc cộng hai số nguyên. * Tổng của một số với một số dương thì lớn hơn chính nó. * Tổng của một số với một số âm thì nhỏ hơn chính nó. * Tổng của một số với 0 thì bằng chính nó. * Tổng của hai số đối nhau bằng 0. Dạng 2 . Vận dụng tính chất của phép cộng các số nguyên tính tổng đại số. Muốn tính nhanh kết quả của tổng đại số, cần vận dụng các tính chất của phép cộng các số nguyên để thực hiện phép tính một cách hợp lí. Có thể cộng các số nguyên âm với nhau, các số nguyên dương với nhau, rồi tính tổng chung. Nếu trong tổng có hai số nguyên đối nhau thì kết hợp chúng với nhau. PHÉP TRỪ SỐ NGUYÊN & QUY TẮC DẤU NGOẶC PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Thực hiện phép trừ. * Để thực hiện phép trừ hai số nguyên, ta biến đổi phép trừ thành phép cộng với số đối rồi thực hiện quy tắc cộng hai số nguyên đã biết. * Hai số a và a là hai số đối của nhau. Dạng 2 . Quy tắc dấu ngoặc. Để tính nhanh các tổng, ta áp dụng quy tắc dấu ngoặc để bỏ dấu ngoặc, nếu đằng trước ngoặc có dấu “+” khi bỏ ngoặc giữ nguyên dấu các số hạng bên trong ngoặc, nếu đằng trước ngoặc có dấu “–“ khi bỏ dấu ngoặc phải đổi dấu các số hạng trong ngoặc. Sau đó áp dụng các tính chất giao hoán, kết hợp trong tổng đại số. Chú ý kết hợp các cặp số hạng đối nhau hoặc các cặp số hạng có kết quả tròn chục, tròn trăm. Hoặc ta cần nhóm các số hạng vào trong ngoặc: Nếu đặt dấu “–” đằng trước dấu ngoặc thì phải đổi dấu các số hạng đó, còn nếu đặt dấu “+” đằng trước dấu ngoặc thì vẫn giữ nguyên dấu các số hạng đó. Dạng 3 . Toán tìm x. * Đối với dạng toán tìm x trong một đẳng thức, ta cần vận dụng quy tắc dấu ngoặc (nếu có) và một số tính chất để rút gọn mỗi vế của đẳng thức. Cuối cùng vận dụng quan hệ giữa các số có phép tính (nếu có) để tìm x.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề số nguyên theo chương trình SGK Toán 6 mới
Tài liệu gồm 117 trang, tóm tắt lý thuyết, bài tập trắc nghiệm và bài tập tự luận chuyên đề số nguyên theo chương trình SGK Toán 6 mới (Kết Nối Tri Thức Với Cuộc Sống, Cánh Diều, Chân Trời Sáng Tạo), đầy đủ các mức độ nhận thức: nhận biết, thông hiểu, vận dụng và vận dụng cao, có đáp án và lời giải chi tiết. Dạng 1: SO SÁNH SỐ NGUYÊN. Dạng 2: CỘNG, TRỪ, NHÂN, CHIA SỐ NGUYÊN. Dạng 3: TÌM X. Dạng 4: RÚT GỌN SỐ NGUYÊN. Dạng 5: TÍNH CHIA HẾT TRONG TẬP HỢP SỐ NGUYÊN. DẠNG 6: TOÁN CÓ LỜI VĂN. DẠNG 7: DÃY SỐ TRONG TẬP HỢP SỐ NGUYÊN.
Chuyên đề số tự nhiên theo chương trình SGK Toán 6 mới
Tài liệu gồm 117 trang, tóm tắt lý thuyết, bài tập trắc nghiệm và bài tập tự luận chuyên đề số tự nhiên theo chương trình SGK Toán 6 mới (Kết Nối Tri Thức Với Cuộc Sống, Cánh Diều, Chân Trời Sáng Tạo), đầy đủ các mức độ nhận thức: nhận biết, thông hiểu, vận dụng và vận dụng cao, có đáp án và lời giải chi tiết. CHUYÊN ĐỀ 1: TẬP HỢP. CHUYÊN ĐỀ 2: CÁC PHÉP TÍNH TRONG TẬP HỢP SỐ TỰ NHIÊN. CHUYÊN ĐỀ 3: LŨY THỪA VỚI SỐ MŨ TỰ NHIÊN. CHUYÊN ĐỀ 4: TÍNH CHẤT CHIA HẾT VÀ DẤU HIỆU CHIA HẾT. CHUYÊN ĐỀ 5: SỐ NGUYÊN TỐ VÀ HỢP SỐ. PHÂN TÍCH MỘT SỐ RA THỪA SỐ NGUYÊN TỐ. CHUYÊN ĐỀ 6: ƯỚC CHUNG VÀ ƯỚC CHUNG LỚN NHẤT. BỘI CHUNG VÀ BỘI CHUNG NHỎ NHẤT.
Chuyên đề tính tổng dãy số có quy luật
Tài liệu gồm 103 trang, trình bày kiến thức trọng tâm cần đạt, hướng dẫn giải các dạng toán và tuyển chọn các bài tập chuyên đề tính tổng dãy số có quy luật, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình ôn tập thi học sinh giỏi môn Toán 6. A. TRỌNG TÂM CẦN ĐẠT Dạng 1: Tổng các số hạng cách đều S = a1 + a2 + a3 + … + an. Dạng 2: Tính tổng có dạng S = 1 + a + a2 + a3 + … + an. Dạng 3: Tính tổng có dạng S = 1 + a2 + a4 + a6 + … + a2n. Dạng 4: Tính tổng có dạng S = a + a3 + a5 + a7 + … + a2n + 1. Dạng 5: Tính tổng có dạng S = 1.2 + 2.3 + 3.4 + 4.5 + … + n(n + 1). Dạng 6: Tính tổng có dạng S = 12 + 22 + 32 + 42 + … + n2. Dạng 7: Tính tổng có dạng S = 12 + 32 + 52 + … + (2k + 1)2. Dạng 8: Tính tổng có dạng S = 22 + 42 + 62 + … + (2k)2. Dạng 9: Tính tổng có dạng S = a1.a2 + a2.a3 + a3.a4 + … + an.an+1. Dạng 10: Tính tổng có dạng S = a1.a2.a3 + a2.a3.a4 + a3.a4.a5 + … + an.an+1.an+2. Dạng 11: Tính tổng có dạng S = 1 + 23 + 33 + … + n3. Dạng 12: Liên phân số. B. BÀI TOÁN THƯỜNG GẶP TRONG ĐỀ THI HSG TOÁN 6
Chuyên đề so sánh
Tài liệu gồm 105 trang, trình bày kiến thức trọng tâm cần đạt, hướng dẫn giải các dạng toán và tuyển chọn các bài tập chuyên đề so sánh, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình ôn tập thi học sinh giỏi môn Toán 6. A. TRỌNG TÂM CẦN ĐẠT CHỦ ĐỀ 1: SO SÁNH LŨY THỪA. I. KIẾN THỨC CẦN NHỚ. II. CÁC DẠNG TOÁN. Dạng 1: So sánh hai số lũy thừa. Dạng 2: So sánh biểu thức lũy thừa với một số (so sánh hai biểu thức lũy thừa). Dạng 3: Từ việc so sánh lũy thừa tìm cơ số (số mũ) chưa biết. Dạng 4: Một số bài toán khác. CHỦ ĐỀ 2: SO SÁNH PHÂN SỐ. I. TÓM TẮT LÝ THUYẾT. II. CÁC DẠNG TOÁN. Phương pháp 1: Quy đồng mẫu dương. Phương pháp 2: Quy đồng tử dương. Phương pháp 3: Tích chéo với các mẫu dương. Phương pháp 4: Dùng số hoặc phân số làm trung gian. Phương pháp 5: Dùng tính chất. Phương pháp 6: Đổi phân số lớn hơn đơn vị ra hỗn số để so sánh. III. CÁC BÀI TẬP TỔNG HỢP. B. BÀI TOÁN THƯỜNG GẶP TRONG ĐỀ HSG TOÁN 6