Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lần 3 Toán 12 năm 2020 - 2021 trường THPT Nguyễn Viết Xuân - Vĩnh Phúc

Ngày … tháng 03 năm 2021, trường THPT Nguyễn Viết Xuân, huyện Vĩnh Tường, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 năm học 2020 – 2021 lần thứ ba. Đề KSCL lần 3 Toán 12 năm 2020 – 2021 trường THPT Nguyễn Viết Xuân – Vĩnh Phúc mã đề 013 gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian làm bài 90 phút, đề thi có đáp án mã đề 013. Trích dẫn đề KSCL lần 3 Toán 12 năm 2020 – 2021 trường THPT Nguyễn Viết Xuân – Vĩnh Phúc : + Trên bàn có một cốc nước hình trụ chứa đầy nước, có chiều cao bằng 3 lần đường kính của đáy; một viên bi và một khối nón đều bằng thủy tinh. Biết viên bi là một khối cầu có đường kính bằng của cốc nước. Người ta từ từ thả vào cốc nước viên bi và khối nón đó (như hình vẽ) thì thấy nước trong cốc tràn ra ngoài. Tính tỉ số thể tích của lượng nước còn lại trong cốc và lượng nước ban đầu (bỏ qua bề dày của lớp vỏ thủy tinh). + Một người gửi tiết kiệm vào một ngân hàng với lãi suất r = 6,9% / năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào vốn để tính lãi cho năm tiếp theo. Hỏi sau ít nhất bao nhiêu năm nữa người đó thu được (cả vốn và lãi) gấp bốn lần số tiền gửi ban đầu, giả định trong khoảng thời gian này, lãi suất không thay đổi và người đó không rút tiền ra? A. 21 năm. B. 19 năm. C. 18 năm. D. 22 năm. + Cho hàm số y = f(x) = ax3 + bx2 + cx + d với a ≠ 0 có hai hoành độ cực trị là x = 1 và x = 3. Tập hợp tất cả các giá trị của tham số m để phương trình f(x) = f(m) có đúng ba nghiệm phân biệt là?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL Toán lần 2 năm 2019 - 2020 trường THPT chuyên Phan Bội Châu - Nghệ An
Nhằm giúp học sinh khối 12 của nhà trường ôn tập, rèn luyện để chuẩn bị cho kỳ thi THPT Quốc gia môn Toán, ngày … tháng 05 năm 2020, trường THPT chuyên Phan Bội Châu, tỉnh Nghệ An tổ chức kỳ thi khảo sát chất lượng môn Toán 12 lần thứ hai năm học 2019 – 2020. Đề KSCL Toán lần 2 năm 2019 – 2020 trường THPT chuyên Phan Bội Châu – Nghệ An có mã đề 132, đề thi gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề KSCL Toán lần 2 năm 2019 – 2020 trường THPT chuyên Phan Bội Châu – Nghệ An : + Cho một tấm nhôm hình vuông cạnh 12 cm. Người ta cắt ở bốn góc của tấm nhôm đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng x (cm), rồi gập tấm nhôm lại để được một cái hộp không nắp( tham khảo hình vẽ bên). Tìm x để hộp nhận được có thể tích lớn nhất (giả thiết bề dày tấm tôn không đáng kể). + Cho hàm số f(x) = (x – 1).(x – 2) … (x – 2020).  Có bao nhiêu giá trị nguyên của m thuộc đoạn [–2020;2020] để phương trình f'(x) = mf(x) có 2020 nghiệm phân biệt? [ads] + Cho hình chóp S.ABC có thể tích bằng 1. Mặt phẳng (Q) thay đổi song song với mặt phẳng (ABC) lần lượt cắt các cạnh SA, SB, SC tại M, N, P. Qua M, N, P kẻ các đường thẳng song song với nhau lần lượt cắt mặt phẳng (ABC) tại M’, N’, P’. Tính giá trị lớn nhất của thể tích khối lăng trụ MNP.M’N’P. + Cho hình chóp S.ABC có SA vuông góc với đáy, đáy là tam giác đều, SA = a√3 và góc giữa đường thẳng SB và đáy bằng 60 độ. Gọi H, K lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính bán kính mặt cầu đi qua các điểm A, B, H, K. + Cho hình thang ABCD vuông tại A và D, AD = CD = a, AB = 2a. Quay hình thang ABCD quanh cạnh AB, thể tích khối tròn xoay thu được là?
Đề KSCL thi THPT Quốc gia 2020 môn Toán lần 2 trường THPT chuyên Vĩnh Phúc
Chủ Nhật ngày 24 tháng 05 năm 2020, trường THPT chuyên Vĩnh Phúc, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán 12 lần thứ hai ôn thi THPT Quốc gia năm học 2019 – 2020. Đề KSCL thi THPT Quốc gia 2020 môn Toán lần 2 trường THPT chuyên Vĩnh Phúc mã đề 312 gồm 05 trang với 50 câu trắc nghiệm, học sinh làm bài trong 90 phút, đề thi có đáp án. Trích dẫn đề KSCL thi THPT Quốc gia 2020 môn Toán lần 2 trường THPT chuyên Vĩnh Phúc : + Cho phương trình m.ln(x + 1) – x – 2 = 0. Biết rằng tập hợp tất cả các giá trị của tham số m để phương trình đã cho có hai nghiệm x1 và x2 thỏa mãn 0 < x1 < 2 < 4 < x2 là khoảng (a;+∞). Khi đó a thuộc khoảng nào dưới đây? + Cho hình vuông ABCD cạnh a, trên đường thẳng vuông góc với mặt phẳng (ABCD) tại A ta lấy điểm S di động không trùng với A. Hình chiếu vuông góc của A lên SB và SD lần lượt là H và K. Tìm giá trị lớn nhất của thể tích khối tứ diện ACHK. + Cho hàm số y = f(x). Hàm số y = f'(x) có đồ thị như hình bên. Biết f(-1) = 1 và f(-1/e) = 2. Tìm tất cả các giá trị của m để bất phương trình f(x) < ln(-x) + m nghiệm đúng với mọi x thuộc (-1;-1/e).
Đề KSCL tốt nghiệp THPT 2020 lần 1 Toán 12 trường THPT Tô Hiến Thành - Thanh Hóa
Ngày … tháng 05 năm 2020, trường THPT Tô Hiến Thành, tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng tốt nghiệp THPT môn Toán 12 năm học 2019 – 2020 lần thứ nhất. Đề KSCL tốt nghiệp THPT 2020 lần 1 Toán 12 trường THPT Tô Hiến Thành – Thanh Hóa có mã đề 121, đề được biên soạn bám sát cấu trúc đề minh họa THPT 2020 môn Toán lần 2 của Bộ Giáo dục và Đào tạo, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL tốt nghiệp THPT 2020 lần 1 Toán 12 trường THPT Tô Hiến Thành – Thanh Hóa : + Trên một chiếc đài Radio FM có vạch chia để người dùng có thể dò sóng cần tìm. Vạch ngoài cùng bên trái và vạch ngoài cùng bên phải tương ứng với 88Mhz và 108Mhz. Hai vạch này cách nhau 10cm. Biết vị trí của vạch cách vạch ngoài cùng bên trái d (cm) thì có tần số bằng k.a^d Mhz với k và a là hai hằng số. Tìm vị trí tốt nhất của vạch để bắt sóng VOV1 với tần số 102,7 Mhz. A. Cách vạch ngoài cùng bên phải 1,98cm. B. Cách vạch ngoài cùng bên phải 2,46cm. C. Cách vạch ngoài cùng bên trái 7,35cm. D. Cách vạch ngoài cùng bên trái 8,23cm. [ads] + Cho hệ phương trình log3 (x + y) = m và log2 (x^2 + y^2) = 2m, trong đó m là tham số thực. Hỏi có bao nhiêu giá trị của m để hệ phương trình đã cho có đúng hai nghiệm nguyên? + Cho đồ thị hai hàm số f(x) = (2x + 1)/(x + 1) và g(x) = (ax + 1)/(x + 2) với a ≠ 1/2. Tìm các giá trị thực dương của a để các tiệm cận của hai đồ thị hàm số tạo thành một hình chữ nhật có diện tích là 4.
Đề KSCL Toán 12 lần 2 năm 2019 - 2020 trường chuyên Quang Trung - Bình Phước
Nằm trong kế hoạch ôn tập hướng đến kỳ thi THPT Quốc gia 2020 môn Toán, ngày … tháng … năm 2020, trường THPT chuyên Quang Trung, tỉnh Bình Phước tổ chức kỳ thi khảo sát chất lượng môn Toán 12 năm học 2019 – 2020 lần thứ hai. Đề KSCL Toán 12 lần 2 năm 2019 – 2020 trường chuyên Quang Trung – Bình Phước có mã đề 003, đề gồm 08 trang với 50 câu trắc nghiệm, học sinh làm bài trong 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL Toán 12 lần 2 năm 2019 – 2020 trường chuyên Quang Trung – Bình Phước : + Xét các số nguyên dương a, b sao cho phương trình a(lnx)^2 + blnx + 5 = 0 có hai nghiệm phân biệt x1, x2 và phương trình 5(logx)^2 + blogx + a = 0 có hai nghiệm phân biệt x3, x4 sao cho x1x2 > x3x4. Tìm giá trị nhỏ nhất của S = 2a + 3b. + Cho hàm số y = f(x) có đạo hàm liên tục trên và có đồ thị y = f(x) như hình vẽ. Đặt g(x) = f(x – m) – 1/2.(x – m – 1)^2 + 2019 với m là tham số thực. Gọi S là tập hợp các giá trị nguyên dương của m để hàm số y = g(x) đồng biến trên khoảng (5;6). Tổng tất cả các phần tử trong S bằng? [ads] + Cho hình chóp S.ABCD đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD), SA = a. M và K tương ứng là trọng tâm tam giác SAB và SCD; N là trung điểm BC. Thể tích khối tứ diện SMNK bằng m/n.a^3 với m, n thuộc N và (m;n) = 1. Giá trị m + n bằng? + Cho hàm số y = f(x) xác định trên R\{1}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ. Tìm tập hợp tất cả các giá trị của tham số thực m sao cho phương trình f(x) = 2m – 4 có đúng 3 nghiệm thực phân biệt. + Hình đa diện nào dưới đây không có tâm đối xứng: Tứ diện đều; Hình lập phương; Hình bát diện đều; Hình trụ. A.Tứ diện đều. B. Lập phương. C. Bát diện đều. D. Hình trụ.