Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi tỉnh Toán 10 năm 2015 - 2016 sở GDĐT Hà Tĩnh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi tỉnh Toán 10 năm 2015 – 2016 sở GD&ĐT Hà Tĩnh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán 10 năm 2015 – 2016 sở GD&ĐT Hà Tĩnh : + Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác nhọn ABC có đường cao AH (H ∈ BC) và D, E lần lượt là trung điểm của AB, AC. Gọi F là điểm đối xứng với B qua E. Giả sử F(−3; 3) và đường trung trực của CH có phương trình x − 1 = 0. Tìm tọa độ giao điểm M của các đường thẳng HD, FA. Tìm tọa độ giao điểm N của tia CD với đường tròn ngoại tiếp tam giác ABC (N 6= C), biết đường thẳng đi qua N và tâm đường tròn ngoại tiếp tam giác HCF có phương trình x − 2y − 1 = 0. + Một vùng đất hình chữ nhật ABCD có AB = 25 km, BC = 20 km và M, N lần lượt là trung điểm của AD, BC. Một người cưỡi ngựa xuất phát từ A đi đến C bằng cách đi thẳng từ A đến một điểm X thuộc đoạn MN rồi lại đi thẳng từ X đến C. Vận tốc của ngựa khi đi trên phần ABNM là 15 km/h, vận tốc của ngựa khi đi trên phần MNCD là 30 km/h. Tìm vị trí của X để thời gian ngựa di chuyển từ A đến C là ít nhất? + Tìm giá trị lớn nhất của số nguyên dương n sao cho tồn tại n tam thức bậc hai khác nhau từng đôi một thỏa mãn đồng thời các điều kiện sau: i) mỗi tam thức bậc hai có hệ số của x 2 bằng 1; ii) tổng của 2 tam thức bậc hai bất kỳ có đúng 1 nghiệm (hai tam thức bậc hai là khác nhau nếu có ít nhất một hệ số tương ứng khác nhau).

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG lớp 10 môn Toán năm 2022 2023 trường THPT Trần Phú Vĩnh Phúc
Nội dung Đề thi HSG lớp 10 môn Toán năm 2022 2023 trường THPT Trần Phú Vĩnh Phúc Bản PDF Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán lớp 10 năm học 2022 – 2023 trường THPT Trần Phú, tỉnh Vĩnh Phúc. Đề thi có mã đề 101, hình thức là trắc nghiệm 100% với 50 câu hỏi và bài toán, thời gian làm bài là 90 phút, không kể thời gian giao đề. Đề thi đã được trang bị đáp án. Đề thi bắt đầu bằng một bài toán liên quan đến một công ti sản xuất và bán máy tính, trong đó yêu cầu học sinh tìm ra số năm mà công ti bán được số lượng máy tính vượt mức 179 nghìn chiếc. Bài toán thứ hai liên quan đến việc tính toán học phí của một khóa học dựa trên số lượng học viên đăng kí. Cuối cùng, bài toán thứ ba đưa ra một tình huống về một lớp học gồm các học sinh giỏi Toán, Văn, và Anh, yêu cầu học sinh tính số học sinh giỏi ít nhất hai môn. Đề thi không chỉ giúp học sinh kiểm tra kiến thức mà còn khuyến khích họ tư duy sáng tạo và giải quyết vấn đề theo cách logic. Hy vọng rằng đề thi sẽ là cơ hội tốt để các em thể hiện khả năng và kiến thức của mình trong môn Toán. Chúc các em có kết quả tốt trong kỳ thi sắp tới!
Đề thi HSG lớp 10 môn Toán năm 2022 2023 trường THPT Nguyễn Thượng Hiền TP HCM
Nội dung Đề thi HSG lớp 10 môn Toán năm 2022 2023 trường THPT Nguyễn Thượng Hiền TP HCM Bản PDF - Nội dung bài viết Đề thi HSG lớp 10 môn Toán năm 2022-2023 trường THPT Nguyễn Thượng Hiền TP HCM Đề thi HSG lớp 10 môn Toán năm 2022-2023 trường THPT Nguyễn Thượng Hiền TP HCM Sytu xin gửi đến quý thầy cô và các em học sinh lớp 10 bài thi chọn học sinh giỏi cấp trường môn Toán lớp 10 năm học 2022-2023 của trường THPT Nguyễn Thượng Hiền, thành phố Hồ Chí Minh (lần thứ 26). Bài thi bao gồm hai phần: phần chung dành cho tất cả các thí sinh và phần riêng dành cho học sinh lớp 10 chuyên Toán và không chuyên Toán. Trích dẫn một số câu hỏi từ đề thi HSG Toán lớp 10 năm 2022-2023 trường THPT Nguyễn Thượng Hiền - TP HCM: 1. Trong lớp 10A có 14 học sinh giỏi Toán, 10 học sinh giỏi Hóa, 8 học sinh giỏi Lý. Có bao nhiêu học sinh giỏi cả ba môn? Phân chia tất cả học sinh thành các tổ có số lượng thành viên bằng nhau. Việc này có thể thực hiện được không? Vì sao? 2. Xét tam giác NTH đều cạnh a. Gọi (X) là tập hợp tất cả điểm M thỏa mãn điều kiện MN.MH - MN.MT = 2MN^2. Hãy tính diện tích của tập hợp (X). 3. Cho tứ giác ABCD nội tiếp có các cặp cạnh đối không song song. Chứng minh rằng hai đường thẳng EK và FK vuông góc, với E là giao điểm của AB và CD, F là giao điểm của AC và BD, K là điểm giao của đường tròn ngoại tiếp các tam giác AFD và BFC.
Đề thi HSG lớp 10 môn Toán năm 2022 2023 lần 1 trường chuyên KHTN Hà Nội
Nội dung Đề thi HSG lớp 10 môn Toán năm 2022 2023 lần 1 trường chuyên KHTN Hà Nội Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 10 năm 2022 – 2023 lần 1 trường chuyên KHTN Hà Nội Đề thi HSG Toán lớp 10 năm 2022 – 2023 lần 1 trường chuyên KHTN Hà Nội Sytu xin gửi đến quý thầy cô và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán lớp 10 năm học 2022 – 2023 lần 1 của trường THPT chuyên KHTN, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 08 tháng 08 năm 2022. Dưới đây là một số câu hỏi trong đề thi HSG Toán lớp 10 năm 2022 – 2023 lần 1 trường chuyên KHTN – Hà Nội: 1. Tìm tất cả các số nguyên n sao cho 5n – 1, 55n + 11 là hai số chính phương và 55n^2 – 149 là số nguyên tố. 2. Xét 100 số nguyên a1, a2, …, a99, a100 có tính chất sau: a1 = a100 = 0 và với mỗi số nguyên dương 2 < i < 99 ta đều có ai > (ai-1 + ai+1)/2. Hỏi giá trị nhỏ nhất có thể có của a23? 3. Cho hình chữ nhật ABCD nội tiếp đường tròn (O). Điểm P thuộc cung nhỏ CD của (O). M là trung điểm CD. Lấy Q thuộc đường thẳng AD sao cho PQ và PM vuông góc. Trên BQ lấy R sao cho PR vuông góc với CD. a) Chứng minh rằng PB và OM cắt nhau trên đường tròn đường kính QM. b) Chứng minh rằng tứ giác PCRD và tam giác RAB có diện tích bằng nhau. c) Hỏi có tất cả bao nhiêu vị trí của P để RA vuông góc RB? Hãy giải thích. Hy vọng rằng các em học sinh sẽ nắm vững kiến thức và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!
Đề thi học sinh giỏi lớp 10 môn Toán năm 2021 2022 cụm trường THPT Hà Nội
Nội dung Đề thi học sinh giỏi lớp 10 môn Toán năm 2021 2022 cụm trường THPT Hà Nội Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 10 cụm trường THPT Hà Nội Đề thi học sinh giỏi Toán lớp 10 cụm trường THPT Hà Nội Sytu rất hân hạnh giới thiệu đến quý thầy cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp cụm môn Toán lớp 10 năm học 2021 - 2022 của cụm trường THPT trực thuộc sở Giáo dục và Đào tạo Hà Nội. Đề thi này được biên soạn kỹ lưỡng, phản ánh đầy đủ kiến thức và kỹ năng mà học sinh cần phải nắm vững để đạt điểm cao trong môn Toán. Chúng tôi hy vọng rằng các em sẽ nắm bắt được cơ hội này để thể hiện khả năng và tiềm năng của mình trong lĩnh vực Toán học.