Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT thành phố Vinh - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi khảo sát chất lượng học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT thành phố Vinh – Nghệ An : + Cho các số nguyên abc thoả mãn ab bc ca 1. Chứng minh rằng 2 2 2 A a b c là số chính phương. Gọi S n là tổng các chữ số của số nguyên dương n khi biểu diễn nó trong hệ thập phân. Biết rằng với bất kỳ số nguyên dương n ta có 0 S n n. Tìm số nguyên dương n thỏa mãn 2 S n n 2023 7. + Tìm các hệ số abc để đa thức 3 2 f x x ax bx c chia hết cho đa thức x 2 và chia cho đa thức 2 x 1 thì dư 3. Cho a b c d e là các số thực dương thỏa mãn a b c d e 4. Tìm giá trị nhỏ nhất của biểu thức a b c d a b c a b P abcde. + Cho tam giác ABC có ba góc nhọn AB AC trung tuyến AM. Kẻ BE vuông góc với AM. Trên đoạn MC lấy điểm F sao cho MFA MEC. Gọi N I lần lượt là trung điểm của đoạn thẳng AF EC AF cắt CE ở O. Chứng minh rằng OEF đồng dạng với OAC. Biết tỷ số 1 2 AM BC tính tỷ số MN MI. Chứng minh rằng NB NC. Cho hình thang cân ABCD AB CD. Gọi M N lần lượt là trung điểm của AB và CD. Trên tia đối của tia DA lấy điểm E, tia EN cắt đoạn thẳng AC tại F. Chứng minh rằng MN là tia phân giác của góc EMF.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Chương Mỹ Hà Nội
Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Chương Mỹ Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 8 năm 2022-2023 phòng GD&ĐT Chương Mỹ - Hà Nội Đề học sinh giỏi Toán lớp 8 năm 2022-2023 phòng GD&ĐT Chương Mỹ - Hà Nội Sytu xin chào đến quý thầy cô và các em học sinh lớp 8 với đề kiểm tra chất lượng học sinh giỏi môn Toán cho năm học 2022 - 2023 từ phòng Giáo dục và Đào tạo huyện Chương Mỹ, thành phố Hà Nội. Dưới đây là một số câu hỏi từ đề thi: 1. Giải phương trình: \( (4x - 5)^2(2x - 3)(x - 1) = 9 \). Tìm các cặp số nguyên (x;y) thỏa mãn: \( 3 \times 2 + 5y^2 = 345 \). Tìm hệ số a, b để đa thức \( x^5 - 6x^2 + ax + b \) chia hết cho đa thức \( x^2 - 3x + 2 \). 2. Cho hình chữ nhật ABCD, gọi H là hình chiếu của D trên AC. Gọi M, N, K lần lượt là trung điểm của BC, AH, DH. 1) Tứ giác MNKC là hình gì? Vì sao? 2) Chứng minh rằng: \( DH^2 = HA \cdot HC \). 3) Chứng minh rằng: AND đồng dạng với DKC. 4) Chứng minh rằng: DN vuông góc NM. 3. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất.
Đề giao lưu HSG lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Chí Linh Hải Dương
Nội dung Đề giao lưu HSG lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Chí Linh Hải Dương Bản PDF - Nội dung bài viết Đề giao lưu HSG lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Chí Linh Hải Dương Đề giao lưu HSG lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Chí Linh Hải Dương Sytu xin gửi đến quý thầy cô và các em học sinh lớp 8 đề giao lưu học sinh giỏi môn Toán lớp 8 trong năm học 2022 - 2023 từ phòng Giáo dục và Đào tạo thành phố Chí Linh, tỉnh Hải Dương. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn từ Đề giao lưu HSG Toán lớp 8 năm 2022 - 2023 phòng GD&ĐT Chí Linh - Hải Dương: Phần bài tập đầu tiên yêu cầu tìm phần dư khi chia đa thức f(x) cho 2x(x+1). Phần thứ hai bài toán đưa ra một bài toán chứng minh về tính chất của số nguyên n khi n là số nguyên lớn hơn 1 và thoả mãn một số điều kiện về số nguyên tố. Phần cuối cùng là một bài toán liên quan đến tam giác ABC nhọn và các đường cao AD, BE, CF cùng với điểm trung điểm M và các đường thẳng đi qua điểm H. Đề thi là cơ hội tốt để các em học sinh lớp 8 rèn luyện kỹ năng giải toán, phân tích và suy luận logic. Hy vọng rằng đề thi sẽ giúp các em hiểu rõ hơn về các kiến thức Toán và phát triển khả năng giải quyết vấn đề một cách logic và tự tin.
Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT thành phố Ninh Bình
Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT thành phố Ninh Bình Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT thành phố Ninh Bình Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT thành phố Ninh Bình Trong đề thi chọn học sinh giỏi môn Toán lớp 8 THCS năm học 2022 - 2023 do phòng Giáo dục và Đào tạo thành phố Ninh Bình tổ chức, có những bài toán thú vị và đầy thách thức dành cho các em học sinh lớp 8. Trong số đó, một vài bài toán đặc biệt như sau: **Bài toán 1:** Một vật thể chuyển động từ A đến B theo cách sau: đi được 4m thì dừng lại 1 giây, rồi đi tiếp 8m dừng lại 2 giây, rồi đi tiếp 12m dừng lại 3 giây... Cứ như vậy đi từ A đến B kể cả dừng hết tất cả 155 giây. Biết rằng khi đi vật thể luôn có vận tốc 2m/giây. Hãy tính khoảng cách từ A đến B. **Bài toán 2:** Cho hình vuông ABCD. Qua A kẻ một đường thẳng cắt đoạn thẳng BC tại P (P khác B, P khác C) và cắt tia DC tại Q. Kẻ đường thẳng vuông góc với AP tại A, đường thẳng này cắt tia CB tại R và cắt tia CD tại S. Tia SP cắt QR tại H. Gọi M, N lần lượt là trung điểm của QR và SP. Chứng minh rằng: a) Tam giác AQR và APS là các tam giác vuông cân. b) Tứ giác AMHN là hình chữ nhật. c) MN là đường trung trực của đoạn thẳng AC. **Bài toán 3:** Cho tam giác ABC có góc ABC = 30°. Dựng bên ngoài tam giác ABC tam giác ACD vuông cân tại D. Chứng minh rằng 2BD² = BA² + BC² + BA.BC. Đây là những bài toán thú vị và mang tính logic cao, chắc chắn sẽ giúp các em học sinh lớp 8 rèn luyện tư duy và kỹ năng giải quyết vấn đề một cách hiệu quả. Hy vọng các em sẽ tự tin và thành công khi giải quyết các bài toán này!
Đề chọn ĐT HSG tỉnh lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Triệu Sơn Thanh Hóa
Nội dung Đề chọn ĐT HSG tỉnh lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Triệu Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề Thi Đội Tuyển Học Sinh Giỏi Toán Lớp 8 - Triệu Sơn, Thanh Hóa Đề Thi Đội Tuyển Học Sinh Giỏi Toán Lớp 8 - Triệu Sơn, Thanh Hóa Xin chào quý thầy cô và các em học sinh lớp 8! Hôm nay, Sytu xin giới thiệu đến mọi người đề chọn đội dự tuyển học sinh giỏi cấp tỉnh môn Toán cho năm học 2022-2023 tại phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào ngày 17 tháng 03 năm 2023, với đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi mẫu từ đề thi: Bài 1: Cho a, b là các số tự nhiên lớn hơn 2 và p là số tự nhiên thỏa mãn \(2^{p-1} = a^b\). Chứng minh rằng p là hợp số. Bài 2: Cho đoạn thẳng AB = 2a. Gọi O là trung điểm của AB. Dựng các tia Ax, By về cùng một phía của AB sao cho Ax, By lần lượt vuông góc với AB. Chứng minh rằng CD = AC = BD. Bài 3: Cho hình thang ABCD có đáy lớn là CD. Gọi O là giao điểm của AC và BD. Một đường thẳng cắt các đoạn AD, OD, OC, BC lần lượt tại M, N, P, Q sao cho MN = NP = PQ. Chứng minh rằng CD = 2AB. Hy vọng mọi người sẽ tham gia và thể hiện tài năng của mình tại kỳ thi sắp tới! Chúc các em học sinh đạt kết quả cao và tiếp tục phát triển trong hành trình học tập của mình!